Skip to main content

Advertisement

Log in

Melatonin ameliorates oxidative stress and induces cellular proliferation of lymphoid tissues of a tropical rodent, Funambulus pennanti, during reproductively active phase

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Effect of melatonin treatment on free radical production was assessed with simultaneous investigation of hormonal level (melatonin and testosterone), blastogenic response, stimulation index, and histological observation of lymphoid organs (spleen, thymus, and bone marrow) in male Indian palm squirrel (Funambulus pennanti) during reproductively active phase (RAP). Low endogenous melatonin and high testosterone level were noted during RAP. Daily subcutaneous injection of melatonin (25 μg/100 g B wt.) at 17.30–18.00 h to squirrels for 60 consecutive days during May–June significantly decreased the thiobarbituric acid reactive substances (TBARS) level compared to control squirrels. Melatonin treatment significantly increased % stimulation ratio (%SR) of splenocytes and thymocytes against T cell mitogen concanavalin A. Pinealectomy (Px) led to a significant increase in TBARS level whereas a significant decrease was observed in blastogenic response and stimulation index was noted. Melatonin injection to Px squirrels showed restoration in %SR of thymocytes and splenocytes with a significant decrease in the TBARS level of the lymphoid tissues. Further, free radical load was induced by lipopolysaccharide (LPS; 400 μg/ml) in lymphatic tissue homogenates and noted that melatonin supplementation (2 mM/ml) led to a significant decrease in TBARS level compared to the control and LPS-supplemented groups. Histological observation showed dense cellularity of thymocytes and splenocytes. Acridine orange staining technique shows a significant increase in thymocyte apoptosis Px squirrels when compared with melatonin-treated squirrels. These findings suggest that endogenous and exogenous melatonin might be responsible for the maintenance of immune system to adapt this seasonal breeder for the rigors of the environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allegra M, Reiter RJ, Tan DX (2003) The chemistry of melatonin’s interaction with reactive oxygen species. J Pineal Res 34:1–10

    Article  PubMed  CAS  Google Scholar 

  • Amutha R, Brahmanandhan GM, Malathi J, Khanna D, Selvasekarapandian S, Sarida R (2005) Study of background radiation from soil sample of Pollachi taluk, Tamilnadu, India. Int Congr Ser 1276:331–332

    Article  Google Scholar 

  • Anisimov SV, Popovic N (2004) Genetic aspect of melatonin biology. Rev Neurosci 15:209–230

    PubMed  CAS  Google Scholar 

  • Antolin I, Rodriguez C, Snaiz RM, Mayo JC, Uria H, Kotler ML (1996) Neurohormone melatonin prevents cell damage effect on gene expression for antioxidant enzyme. FASEB J 10:882–890

    PubMed  CAS  Google Scholar 

  • Bhattacharya S, Chattoraj A, Maitra SK (2007) Melatonin in the regulation of annual testicular events in carp Catla catla: evidence from the studies on the effects of exogenous melatonin, continuous light, and continuous darkness. Chronobiol Int 24:629–650

    Article  PubMed  CAS  Google Scholar 

  • Claustrat B, Brun J, Chazot G (2005) The basic physiology and pathophysiology of melatonin. Sleep Med Rev 9:11–24

    Article  PubMed  Google Scholar 

  • Costa EJ, Lopes RH, Lamy-Freund MT (1995) Permeability of pure lipid bilayers to melatonin. J Pineal Res 19:123–126

    Article  PubMed  CAS  Google Scholar 

  • Darzynkiewicz Z, Tragnos F, Mr M (1980) New cell cycle compartment identified by flow cytometry. Cytometry 1:98–108

    Article  PubMed  CAS  Google Scholar 

  • Disis ML, Schiffman K, Gooley TA, McNeel DG, Rinn K, Knutson KL (2000) Delayed-type hypersensitivity response is a predictor of peripheral blood T-cell immunity after HER-2/neu peptide immunization. Clin Cancer Res 6:1347–1350

    PubMed  CAS  Google Scholar 

  • Furry G, Ubeaud C, Lambert PH, Bertin S, Coge F, Chomarat P, Delagrange P, Serkiz B, Bouchet JP, Truscott RJ, Boutin JA (2005) Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: investigation with indoleamine2,3-dioxygenase and myeloperoxidase. Biochem J 388:205–215

    Article  Google Scholar 

  • Guenther AI, Schmidt SI, Laatsch H, Fotso S, Ness H, Ressmeyer AR, Poeggeler B, Hardeland R (2005) Reaction of melatonin metabolite AMK (N1-acetyl-5-acetyl-5-methoxykynuramine) with reactive nitrogen species: formation of novel compounds.3-acetamidomethyl-6-methoxycinnolinone and 3-nitro AMK. J Pineal Res 39:251–260

    Article  PubMed  CAS  Google Scholar 

  • Guerrero JM, Reiter RJ (2002) Melatonin–immune system relationship. Curr top Med Chem 2:167–179

    Article  PubMed  CAS  Google Scholar 

  • Haldar C (1986) Method of pinealectomy in some vertebrates. Ind J Exp Biol 24:319–322

    Google Scholar 

  • Haldar C, Singh R, Guchait P (2001) Relationship between the annual rhythm in melatonin and immune system in the tropical palm squirrel F. pennanti. Chronobiol Int 18:61–69

    Article  PubMed  CAS  Google Scholar 

  • Haldar C, Sharma S, Singh SS (2004) Annual variation of plasma melatonin following pinealectomy and melatonin administration in Indian tropical rodent, Funambulus pennanti. Biogenic Amines 18:131–141

    Article  CAS  Google Scholar 

  • Haldar C, Sharma S, Singh SS (2006) Reproductive phase dependent circadian variation of plasma melatonin, testosterone, thyroxine and corticosterone in Indian palm squirrel, Funambulus pennanti. Biol Rhythm Res 37:1–10

    Article  CAS  Google Scholar 

  • Hardeland R, Pandi-Perumal SR (2005) Melatonin, a potent agent in antioxidative defense: action as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab (Lond) 10:2–22

    Google Scholar 

  • Kime DE, Manning NJ (1982) Seasonal pattern of free conjugate androgens in the brown trout, Salmo trutta. Gen Comp Endocrinol 48:221–231

    Google Scholar 

  • Levi F, Reinberg A, Canon C (1989) Clinical immunology and allergy. In: Arendt J, Minors DS, Waterhouse JM (eds) Biological rhythm in clinical practice. Wright, London, pp 99–135

    Google Scholar 

  • Lewis AJ, Kereny NA, Feuer G (1990) Neuropharmacology of pineal secretion. Rev Drug Metab Drug Interact 8:247–312

    CAS  Google Scholar 

  • Litvinenko GI, Shurlygina AV, Shirinskii VS, Nepomnyashchikh VM, Shirinskii IV, Leonova MI et al (2006) Cicadian variations in immune values and serum melatonin in asthmatics. Bull Exp Biol Med 142:553–556

    Article  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology. Just what is cost of immunity? Oikois 88:87–98

    Article  Google Scholar 

  • Macchi MM, Bruce JN (2004) Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol 25:177–195

    Article  PubMed  CAS  Google Scholar 

  • Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Rodriguez C (2002) Melatonin regulation of antioxidant enzyme gene expression. Cell Mol Life Sci 59:1706–1713

    Article  PubMed  CAS  Google Scholar 

  • Mayo JC, Sainz RM, Tan DX, Hardeland R, Leon J, Rodriguez C, Reiter RJ (2005) Anti-inflammatory action of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophase. J Neuroimmunol 165:139–149

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1978) Reaction of linoleic acid hydroperoxide with thiobarbituric acid. Journal of Lipid Research 19:1053–1057

    PubMed  CAS  Google Scholar 

  • Ojovan MI, Lee WE (2005) Background radiation. In: Ojovan MI, Lee WE (eds) An introduction to nuclear waste immobilization. Elsevier, USA, pp 53–60

    Chapter  Google Scholar 

  • Ortiz GG, Benitez-King GA, Rosales-Correl SA, Pacheco-Moises FP, Velazquez-Brizuela IE (2008) Cellular and biochemical actions of melatonin which protect against free radical: role in neurodegenerative disorders. Curr Neuropharmacol 6:203–214

    Article  PubMed  CAS  Google Scholar 

  • Pauly JL, Sokal JE (1972) A simplified technique for in vitro studies of lymphocytes reactivity. Proc Soc Exp Biol Med 140:40–44

    PubMed  CAS  Google Scholar 

  • Rai S, Haldar C (2003) Pineal control of immune status and hematological changes in blood and bone marrow of male squirrels (Funambulus pennanti) during their reproductively inactive phase. Comp Biochem Physiol (C) 136:319–328

    Google Scholar 

  • Rai S, Haldar C (2006) Adaptive significance of annual variation in immune parameters and endogenous hormones (melatonin and thyroxine) of tropical rodent F. pennant. Jour Endocr Res 2:111–116

    Google Scholar 

  • Rai S, Haldar C, Singh SS (2005) Trade-off between L-thyroxine and melatonin in immune regulation of Indian palm squirrel, Funambulus pennanti during the reproductively inactive phase. Neuroendocrinol 82:103–110

    Article  CAS  Google Scholar 

  • Reiter RJ (2000) Melatonin: lowering the high price of free radicals. News in Physiological Sciences 15:246–250

    PubMed  CAS  Google Scholar 

  • Reiter RJ, Poeggler B, Tan DX, Chen LD, Manchester LC (1993) Antioxidant capacity of melatonin: a novel action not requiring a receptor. Neuroendocrinol Lett 15:103–116

    CAS  Google Scholar 

  • Reiter RJ, Calvo JR, Karbownik M, Qi W, Tan DX (2000) Melatonin and its relation to immune system and inflammation. Ann N Y Acad Sci 917:376–386

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34:237–256

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Sainz RM, Mayo JC, Lopez-Burillo S (2002) Melatonin: reducing the toxicity and increasing the efficacy of drugs. J Pharm Pharmacol 54:1299–1321

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z (2003) Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochimica Polonica 50:1129–1146

    PubMed  CAS  Google Scholar 

  • Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9

    Article  PubMed  CAS  Google Scholar 

  • Rollag MD, Niswender GD (1976) Radioimmunoassay of melatonin in sheep exposed to different light regimes. Endocrinol 98:482–488

    Google Scholar 

  • Sainz RM, Mayo JC, Uria H, Kotler M, Antolin F, Roadrignez C, Menadez-Palacz AZ (1995) The pineal neurohormone melatonin prevents in vivo and in vitro apoptosis of thymocytes. J Pineal Res 19:178–188

    Article  PubMed  CAS  Google Scholar 

  • Sainz RM, Mayo JC, Leon J, Manchester L, Reiter RJ (2005) Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate 63:29–43

    Article  PubMed  CAS  Google Scholar 

  • Sewerynek E, Melchiorri D, Lidun C, Reiter RJ (1995a) Melatonin reduces both basal and bacterial lipopolysaccharide-induced lipid peroxidation in vitro. Free Radic Biol Med 19:903–909

    Article  PubMed  CAS  Google Scholar 

  • Sewerynek E, Poeggeler B, Melchiorri D, Reiter RJ (1995b) H2O2-induced lipid per oxidation in rat brain homogenate is greatly reduced by melatonin. Neuroscience Lett 195:203–205

    Article  CAS  Google Scholar 

  • Sharama S, Haldar C, Chaube SK, Laxmi T (2010) Long term melatonin administration attenuates low-LET γ-radiation-induced lymphatic tissue injury during the reproductively active and inactive phase of Indian palm squirrels (F. pennant). Br J Radiol 83:137–151

    Article  Google Scholar 

  • Shida CS, Aml C, Lamy-Freund MT (1994) High melatonin solubility in aqueous medium. J Pineal Res 16:198–201

    Article  PubMed  CAS  Google Scholar 

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin a potent endogenous hydroxyl radical scavenger. Endocrine J 1:57–60

    Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Plummer BE, Hardies LJ, Weintraub ST, Vijayalaxmi SAM (1998) A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun 253:614–620

    Article  PubMed  CAS  Google Scholar 

  • Than NN, Heer C, Laatsch H, Hardeland R (2006) Reaction of melatonin metabolite N-acetyl-5-methoxy kynuramine (AMK) with ABTS cation radical: identification of new oxidation products. Redox Rep 11:15–24

    Article  PubMed  CAS  Google Scholar 

  • Zavodnik IB, Domanski AV, Lapshina EA, Bryszewska M, Reiter RJ (2006) Melatonin directly scavenges free radicals generated in red blood cells and a cell-free system: chemiluminescence measurements and theoretical calculations. Life Sci 79:391–400

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to University Grant Commission, New Delhi, for providing financial support and to Alexander von Humboldt Foundation (Germany) for gift of instruments (Heracell CO2 Incubator and Heraus Multifuse −4°C).

Conflict of interest

There is no conflict of interest between the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rai Seema.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seema, R., Chandana, H. Melatonin ameliorates oxidative stress and induces cellular proliferation of lymphoid tissues of a tropical rodent, Funambulus pennanti, during reproductively active phase. Protoplasma 250, 21–32 (2013). https://doi.org/10.1007/s00709-011-0367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0367-1

Keywords

Navigation