Skip to main content
Log in

Macromolecules in phloem exudates—a review

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Proteomic and transcriptomic analyses using the growing resources of genomic information have been applied to identification of macromolecules in exudates collected from phloem. Most of the analyses rely on collection of exudate following incisions made to the vasculature, but some limited data are available for exudates collected from excised aphid stylets. Species examined, to date, include a number of cereals (rice, barley, and wheat), a number of cucurbits, castor bean, members of the genus Lupinus, brassicas, and Arabidopsis. As many as 1,100 proteins, some hundreds of transcripts, and a growing number of small ribonucleic acids (RNAs), including micro-RNAs, have been identified across the species with a high degree of commonality. Questions relating to the nature and extent of contamination of sieve element contents with those of surrounding companion cells and nonvascular cells are addressed together with likely functions of identified macromolecules. The review considers likely translocation and systemic signaling functions among the macromolecular inventory of phloem exudates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49:767–790

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Kragler F, Xoconostle-Cázares B, Lucas WJ (2002) A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc Natl Acad Sci USA 99:16342–16347

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Suzui N, Fujimaki S, Dohmae N, Yonekura-Sakakibara K, Fujiwara T, Hayashi H, Yamaya T, Sakakibara H (2005) Destination-selective long-distance movement of phloem proteins. Plant Cell 17:1801–1814

    Article  CAS  PubMed  Google Scholar 

  • Atkins CA (1999) Spontaneous phloem exudation accompanying abscission in Lupinus mutabilis (Sweet). J Exp Bot 50:805–812

    Article  CAS  Google Scholar 

  • Atkins CA, Smith PMC (2007) Translocation in legumes: assimilates, nutrients, and signaling molecules. Plant Physiol 144:550–561

    Article  CAS  PubMed  Google Scholar 

  • Atkins CA, Pate JS, Sharkey PJ (1975) Asparagine metabolism—key to the nitrogen nutrition of developing legume seeds. Plant Physiol 56:807–812

    Article  CAS  PubMed  Google Scholar 

  • Banerjee AK, Chatterjee M, Yu Y, Suh S-G, Miller WA, Hannapel DJ (2006) Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18:3443–3457

    Article  CAS  PubMed  Google Scholar 

  • Barnes A, Bale J, Constantinidou C, Ashton P, Jones A, Pritchard J (2004) Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. J Exp Bot 55:1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Bostwick DE, Dannenhoffer JM, Skaggs MI, Lister RM, Larkins BA, Thompson GA (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4:1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Brady SM, Orlando DA, Lee JY, Wang JY, Kock J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  CAS  PubMed  Google Scholar 

  • Buhtz A, Springer F, Chappell L, Baulcombe D, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    Article  CAS  PubMed  Google Scholar 

  • Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long distance transport of viruses in plants. Plant Cell 8:1669–1681

    Article  CAS  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Cronshaw J (1981) Phloem structure and function. Annu Rev Plant Physiol 32:465–484

    Article  CAS  Google Scholar 

  • Deeken R, Ache P, Kajahn I, Klinkenberg J, Bringmann G, Hedrich R (2008) Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J 55:746–759

    Article  CAS  PubMed  Google Scholar 

  • Ding B, Haudenshield JS, Hull J, Wolf S, Beachy RN, Lucas WJ (1992) Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928

    Article  CAS  PubMed  Google Scholar 

  • Divol F, Vilaine F, Thibivilliers S, Amselem J, Palauqui JC, Kusiak C, Dinant S (2005) Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Mol Biol 57:517–540

    Article  CAS  PubMed  Google Scholar 

  • Doering-Saad C, Newbury HJ, Bale JS, Pritchard J (2002) Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J Exp Bot 53:631–637

    Article  CAS  PubMed  Google Scholar 

  • Doering-Saad C, Newbury HJ, Couldridge CE, Bale JS, Pritchard J (2006) A phloem-enriched cDNA library from Ricinus: insights into phloem function. J Exp Bot 57:3183–3193

    Article  CAS  PubMed  Google Scholar 

  • Eschrich W, Heyser W (1975) Biochemistry of phloem constituents. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology. Vol 1. Transport in plants: I. Phloem transport, vol 1. Springer, Berlin, pp 101–136

    Google Scholar 

  • Fisher DB, Wu K, Ku MSB (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol 100:1433–1441

    Article  CAS  PubMed  Google Scholar 

  • Gaupels F, Buhtz A, Knauer T, Deshmukh S, Waller F, van Bel AJE, Kogel K-H, Kehr J (2008a) Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. J Exp Bot 59:3297–3306

    Article  CAS  PubMed  Google Scholar 

  • Gaupels F, Knauer T, van Bel AJE (2008b) A combinatory approach for analysis of protein sets in barley sieve-tube samples using EDTA-facilitated exudation and aphid stylectomy. J Plant Physiol 165:95–103

    Article  CAS  PubMed  Google Scholar 

  • Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909

    Article  CAS  PubMed  Google Scholar 

  • Golecki B, Schulz A, Carstens-Behrens U, Kollmann R (1998) Evidence for graft transmission of structural phloem proteins or their precursors in heterografts of Cucurbitaceae. Planta 206:630–640

    Article  CAS  Google Scholar 

  • Golecki B, Schulz A, Thompson GA (1999) Translocation of structural P proteins in the phloem. Plant Cell 11:127–140

    Article  CAS  PubMed  Google Scholar 

  • Gomez G, Torres H, Pallás V (2005) Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system. Plant J 41:107–116

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Fukuda A, Suzui N, Fujimaki S (2000) Proteins in the sieve element–companion cell complexes: their detection, localization and possible functions. Aust J Plant Physiol 27:489–496

    CAS  Google Scholar 

  • Haywood V, Yu TS, Huang NC, Lucas WJ (2005) Phloem long-distance trafficking of gibberellic acid-insensitive RNA regulates leaf development. Plant J 42:49–68

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann-Benning S, Gage DA, McIntosh L, Kende H, Zeevaart JAD (2002) Comparison of peptides in the phloem sap of flowering and non-flowering Perilla and lupine plants using microbore HPLC followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Planta 216:140–147

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696

    Article  CAS  PubMed  Google Scholar 

  • Jordan M (2004) microRNA in Lupinus albus (L.). Honours dissertation. University of Western Australia

  • Jorgensen RA, Atkinson RG, Forster RL, Lucas WJ (1998) An RNA-based information superhighway in plants. Science 279:1486–1487

    Article  CAS  PubMed  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  PubMed  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    Article  CAS  PubMed  Google Scholar 

  • Kichey T, Le Gouis J, Sangwan B, Hirel B, Dubois F (2005) Changes in the cellular and subcellular localization of glutamine synthetase and glutamate dehydrogenase during flag leaf senescence in wheat (Triticum aestivum L.). Plant Cell Physiol 46:964–974

    Article  CAS  PubMed  Google Scholar 

  • Kidner CA, Martienssen RA (2005) The developmental role of microRNA in plants. Curr Opin Plant Biol 8:38–44

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Canio W, Kessler S, Sinha N (2001) Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287–289

    Article  CAS  PubMed  Google Scholar 

  • Knoblauch M, van Bel AJE (1998) Sieve tubes in action. Plant Cell 10:35–50

    Article  CAS  Google Scholar 

  • Kühn C, Franceschi VR, Schulz A, Lemoine R, Frommer WB (1997) Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275:1298–1300

    Article  PubMed  Google Scholar 

  • Lin M-K, Belanger H, Lee Y-J, Varkonyi-Gasic E, Taoka K-I, Miura E, Xoconostle-Cázares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ (2007) Flowering locus T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19:1488–1506

    Article  CAS  PubMed  Google Scholar 

  • Lin M-K, Lee Y-J, Lough TJ, Phinney BS, Lucas WJ (2009) Analysis of the pumpkin phloem proteome provides functional insights into angiosperm sieve tube function. Mol Cell Proteomics 8:343–356

    CAS  PubMed  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    Article  CAS  PubMed  Google Scholar 

  • Marentes E, Grusak MA (1998) Mass determination of low-molecular-weight proteins in phloem sap using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Exp Bot 49:903–911

    Article  CAS  Google Scholar 

  • Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S (2007) Characterization of phloem-sap transcription profile in melon plants. J Exp Bot. doi:10.1093/jxb/erm214

    PubMed  Google Scholar 

  • Oparka KJ, Santa Cruz S (2000) The great escape: phloem transport and unloading of macromolecules. Annu Rev Plant Physiol Plant Mol Biol 51:323–347

    Article  CAS  PubMed  Google Scholar 

  • Pant B, Buhtz A, Kehr J, Scheible W (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    Article  CAS  PubMed  Google Scholar 

  • Pate JS, Sharkey PJ, Lewis OAM (1974) Phloem bleeding from legume fruits—a technique for study of fruit nutrition. Planta 120:229–243

    Article  CAS  Google Scholar 

  • Pate JS, Kuo J, Hocking PJ (1978) Functioning of conducting elements of phloem and xylem in the stalk of the developing fruit of Lupinus albus L. Aust J Plant Physiol 5:321–336

    Article  Google Scholar 

  • Pate JS, Peoples MB, Atkins CA (1984) Spontaneous phloem bleeding from cryopunctured fruits of a ureide-producing legume. Plant Physiol 74:499–505

    Article  CAS  PubMed  Google Scholar 

  • Pate JS, Emery RJN, Atkins CA (1998) Transport physiology and partitioning. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International Wallingford, UK, pp 181–226

    Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Medina C (2009) Study of macromolecules in phloem exudates of Lupinus albus. PhD dissertation, University of Western Australia

  • Ruiz-Medrano R, Xoconostle-Cázares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126:4405–4419

    CAS  PubMed  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cazares B, Lucas WJ (2001) The phloem as a conduit for inter-organ communication. Curr Opin Plant Biol 4:202–209

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Chino M, Hayashi H, Fujiwara T (1998) Detection of several mRNA species in rice phloem sap. Plant Cell Physiol 39:895–897

    CAS  PubMed  Google Scholar 

  • Schobert C, Großmann P, Gottschalk M, Komor E, Pecsvaradi A, Nieden UZ (1995) Sieve-tube exudate from Ricinus communis L. seedlings contains ubiquitin and chaperones. Planta 196:205–210

    Article  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  Google Scholar 

  • Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM (2010) Characterisation of microRNAs from apple (Malus domestica ‘Royal Gala’) vascular tissue and phloem sap. MBC Plant Biol 10:159–173

    Google Scholar 

  • Walz C, Juenger M, Schad M, Kehr J (2002) Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. Plant J 31:189–197

    Article  CAS  PubMed  Google Scholar 

  • Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry 65:1795–1804

    Article  CAS  PubMed  Google Scholar 

  • Will T, van Bel AJE (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57:729–737

    Article  CAS  PubMed  Google Scholar 

  • Xoconostle-Cázares B, Xiang Y, Ruiz-Medrano R, Wang HL, Monzer J, Yoo BC, McFarland KC, Franceschi VR, Lucas WJ (1999) Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94–98

    Article  PubMed  Google Scholar 

  • Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Barthelson RA, Lambert GM, Galbraith DW (2008) Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol 147:30–40

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Tolstikov V, Turnbull C, Hicks LM, Fiehn O (2010) Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. PNAS 107:13532–13537

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MH, Ziegler H (1975) List of sugars and sugar alcohols in sieve-tube exudates. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology. Vol 1. Transport in plants: I. Phloem transport. Springer Verlag, Berlin, pp 480–503

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Australian Research Council and the Grains Research and Development Corporation (to CAA and PMCS) and a University of Western Australia Post Graduate Award to CR-M.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Atkins.

Additional information

Handling Editor: Alexander Schulz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkins, C.A., Smith, P.M.C. & Rodriguez-Medina, C. Macromolecules in phloem exudates—a review. Protoplasma 248, 165–172 (2011). https://doi.org/10.1007/s00709-010-0236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0236-3

Keywords

Navigation