Skip to main content
Log in

Family life at close quarters: communication and constraint in angiosperm seed development

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The formation of viable angiosperm seeds involves the co-ordinated growth and development of three genetically distinct organisms, the maternally derived seed coat and the zygotic embryo and endosperm. The physical relationships of these tissues are initially established during the specification and differentiation of the female gametophyte within the tissues of the developing ovule. The molecular programmes implicated in both ovule and seed development involve elements of globally important pathways (such as auxin signalling), as well as ovule- and seed-specific pathways. Recurrent themes, such as the precisely controlled death of specific cell types and the regulation of cell–cell communication and nutrition by the selective establishment of symplastic and apoplastic barriers, appear to play key roles in both pre- and post-fertilization seed development. Much of post-fertilization seed growth occurs during a key developmental window shortly after fertilization and involves the dramatic expansion of the young endosperm, constrained by surrounding maternal tissues. The complex tissue-specific regulation of carbohydrate metabolism in specific seed compartments has been shown to provide a driving force for this early seed expansion. The embryo, which is arguably the most important component of the seed, appears to be only minimally involved in early seed development. Given the evolutionary and agronomic importance of angiosperm seeds, the complex combination of communication pathways which co-ordinate their growth and development remains remarkably poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AP2:

APETALA2

ALE1:

ABNORMAL LEAF SHAPE1

ALE2:

ABNORMAL LEAF SHAPE2

ACR4:

ARABIDOPSIS CRINKLY4

AGP:

Arabinogalactan protein

AGO9:

ARGONAUTE 9

ATO:

ATROPOS

ARF2:

AUXIN RESPONSE FACTOR2

CLO:

CLOTHO

C/M:

Chalazal/micropylar

CDKA;1:

CYCLIN-DEPENDENT KINASE A;1

DEK:

DEFECTIVE KERNEL

EMB:

EMBRYO SPECIFIC

ESR:

Embryo surrounding region

FBL17:

F-BOX-LIKE PROTEIN 17

FM:

Functional megaspore

IKU1:

HAIKU1

IKU2:

HAIKU2

IAA:

Indole-3-acetic acid

IPT:

ISOPRENYL TRANSFERASE

KPR2:

KIP RELATED PROTEIN2

LIS:

LACHENSIS

LRR-RLK:

Leucine-rich repeat receptor-like kinase

MMC:

Megaspore mother cell

MINI3:

MINISEED3

MSP1:

MULTIPLE SPOROCYTE1

RNA:

Ribonucleic acid

SHB1:

SHORT HYPOCOTYL UNDER BLUE1

siRNAs:

Small interfering RNAs

SPL:

SPOROCYTELESS

SAP:

STERILE APETALA

TTG2:

TRANSPARENT TESTA GLABRA2

ZOU:

ZHOUPI

References

  • Adamski NM, Anastasiou E, Eriksson S, O'Neill CM, Lenhard M (2009) Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proc Natl Acad Sci USA 106:20115–20120

    CAS  PubMed  Google Scholar 

  • Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M (2007) Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell 13:843–856

    CAS  PubMed  Google Scholar 

  • Balk PA, de Boer AD (1999) Rapid stalk elongation in tulip (Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein gammaTIP. Planta 209:346–354

    CAS  PubMed  Google Scholar 

  • Baroux, C., Spillane, C. and Grossniklaus, U. (2002). Evolutionary origins of the endosperm in flowering plants. Genome Biol 3(9): reviews1026.

    Google Scholar 

  • Barratt DH, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule AJ, Smith AM (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA 106:13124–13129

    CAS  PubMed  Google Scholar 

  • Bate NJ, Niu X, Wang Y, Reimann KS, Helentjaris TG (2004) An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol 134:246–254

    CAS  PubMed  Google Scholar 

  • Baud S, Wuilleme S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J 43:824–836

    CAS  PubMed  Google Scholar 

  • Beeckman T, De Rycke R, Viane R, Inze D (2000) Histological study of seed coat development in Arabidopsis thaliana. J Plant Res 113:139–148

    Google Scholar 

  • Berger F (2003) Endosperm: the crossroad of seed development. Curr Opin Plant Biol 6:42–50

    CAS  PubMed  Google Scholar 

  • Berger F (2009) Reproductive biology: receptor-like kinases orchestrate love songs in plants. Curr Biol 19:R647–R649

    CAS  PubMed  Google Scholar 

  • Berger F, Grini PE, Schnittger A (2006) Endosperm: an integrator of seed growth and development. Curr Opin Plant Biol 9:664–670

    CAS  PubMed  Google Scholar 

  • Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the HISTONE::YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509

    CAS  PubMed  Google Scholar 

  • Boisson-Dernier A, Frietsch S, Kim TH, Dizon MB, Schroeder JI (2008) The peroxin loss-of-function mutation abstinence by mutual consent disrupts male–female gametophyte recognition. Curr Biol 18:63–68

    CAS  PubMed  Google Scholar 

  • Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M, Schroeder JI, Grossniklaus U (2009) Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136:3279–3288

    CAS  PubMed  Google Scholar 

  • Bonello JF, Opsahl-Ferstad HG, Perez P, Dumas C, Rogowsky PM (2000) Esr genes show different levels of expression in the same region of maize endosperm. Gene 246:219–227

    CAS  PubMed  Google Scholar 

  • Bonello JF, Sevilla-Lecoq S, Berne A, Risueno MC, Dumas C, Rogowsky PM (2002) Esr proteins are secreted by the cells of the embryo surrounding region. J Exp Bot 53:1559–1568

    CAS  PubMed  Google Scholar 

  • Borisjuk L, Rolletschek H, Radchuk R, Weschke W, Wobus U, Weber H (2004) Seed development and differentiation: a role for metabolic regulation. Plant Biol (Stuttg) 6:375–386

    CAS  Google Scholar 

  • Bruck DK, Walker DB (1985) Cell determination during embryogenesis in Citrus jambhiri. I. Ontogeny of the epidermis. Bot Gaz 146:188–195

    Google Scholar 

  • Buttner M (2007) The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett 581:2318–2324

    PubMed  Google Scholar 

  • Byzova MV, Franken J, Aarts MG, de Almeida-Engler J, Engler G, Mariani C, Van Lookeren Campagne MM, Angenent GC (1999) Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development. Genes Dev 13:1002–1014

    CAS  PubMed  Google Scholar 

  • Chamberlin MA, Horner HT, Palmer RG (1994) Early endosperm, embryo and ovule development in Glycine max (L.) Merr. Int J Plant Sci 155:421–436

    Google Scholar 

  • Chapman LA, Goring DR (2010) Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot 61:1987–1999

    CAS  PubMed  Google Scholar 

  • Chen YH, Li HJ, Shi DQ, Yuan L, Liu J, Sreenivasan R, Baskar R, Grossniklaus U, Yang WC (2007) The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19:3563–3577

    CAS  PubMed  Google Scholar 

  • Cheng WH, Taliercio EW, Chourey PS (1996) The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8:971–983

    CAS  PubMed  Google Scholar 

  • Clark JK, Sheridan WF (1991) Isolation and characterization of 51 embryo-specific mutations of maize. Plant Cell 3:935–951

    PubMed  Google Scholar 

  • Cossegal M, Vernoud V, Rogowsky PM (2007) The embryo surrounding region. In: Olsen O-A (ed) Endosperm: developmental and molecular biology. Springer, Berlin, pp 57–71

    Google Scholar 

  • Day RC, Herridge RP, Ambrose BA, Macknight RC (2008) Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol 148:1964–1984

    CAS  PubMed  Google Scholar 

  • Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15:2514–2531

    CAS  PubMed  Google Scholar 

  • Deng Y, Dong H, Mu J, Ren B, Zheng B, Ji Z, Yang WC, Liang Y, Zuo J (2010) Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth. Plant Cell 22:1232–1248

    CAS  PubMed  Google Scholar 

  • Diboll AG, Larson DA (1966) An electron microscopic study of the mature megagametophyte in Zea mays. Am J Bot 53:391–402

    CAS  PubMed  Google Scholar 

  • Dominguez F, Cejudo FJ (2006) Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells. Biochem J 397:529–536

    CAS  PubMed  Google Scholar 

  • Dominguez F, Moreno J, Cejudo FJ (2001) The nucellus degenerates by a process of programmed cell death during the early stages of wheat grain development. Planta 213:352–360

    CAS  PubMed  Google Scholar 

  • Dresselhaus T, Marton ML (2009) Micropylar pollen tube guidance and burst: adapted from defense mechanisms? Curr Opin Plant Biol 12:773–780

    CAS  PubMed  Google Scholar 

  • Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36:99–124

    CAS  PubMed  Google Scholar 

  • Drews GN, Lee D, Christensen CA (1998) Genetic analysis of female gametophyte development and function. Plant Cell 10:5–17

    CAS  PubMed  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    CAS  PubMed  Google Scholar 

  • Engell K (1994) Embryology of barley. IV. Ultrastructure of the antipodal cells of Hordeum valgare L. cv. Bomi before and after fertilization of the egg cell. Sex Plant Reprod 4:333–346

    Google Scholar 

  • Eriksson S, Stransfeld L, Adamski NM, Breuninger H, Lenhard M (2010) KLUH/CYP78A5-dependent growth signaling coordinates floral organ growth in Arabidopsis. Curr Biol 20:527–532

    CAS  PubMed  Google Scholar 

  • Friedman WE (2001) Developmental and evolutionary hypotheses for the origin of double fertilization and endosperm. C R Acad Sci III 324:559–567

    CAS  PubMed  Google Scholar 

  • Garcia D, Saingery V, Chambrier P, Mayer U, Jurgens G, Berger F (2003) Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol 131:1661–1670

    CAS  PubMed  Google Scholar 

  • Garcia D, Fitz Gerald JN, Berger F (2005) Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17:52–60

    CAS  PubMed  Google Scholar 

  • Gifford ML, Dean S, Ingram GC (2003) The Arabidopsis ACR4 gene plays a role in cell layer organisation during ovule integument and sepal margin development. Development 130:4249–4258

    CAS  PubMed  Google Scholar 

  • Greenwood JS, Helm M, Gietl C (2005) Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Proc Natl Acad Sci USA 102:2238–2243

    CAS  PubMed  Google Scholar 

  • Gross-Hardt R, Kagi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jurgens G, Grossniklaus U (2007) LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol 5:e47

    PubMed  Google Scholar 

  • Gunning BES, Pate JS (1974) Transfer Cells. In: Robards AE (ed) Dynamic aspects of plant ultrastructure. McGraw-Hill Book Company, New York, pp 441–480

    Google Scholar 

  • Gusti A, Baumberger N, Nowack M, Pusch S, Eisler H, Potuschak T, De Veylder L, Schnittger A, Genschik P (2009) The Arabidopsis thaliana F-box protein FBL17 is essential for progression through the second mitosis during pollen development. PLoS ONE 4:e4780

    PubMed  Google Scholar 

  • Haig D (1990) New perspectives on the angiosperm female gametophyte. Bot Rev 56:236–274

    Google Scholar 

  • Haig D, Westoby M (1989) Parent-specific expression and the triploid endosperm. Am Nat 134:147–155

    Google Scholar 

  • Hamant O, Traas J (2010) The mechanics behind plant development. New Phytol 185:369–385

    PubMed  Google Scholar 

  • Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM et al (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655

    CAS  PubMed  Google Scholar 

  • Han YZ, Huang BQ, Zee SY, Yuan M (2000) Symplastic communication between the central cell and the egg apparatus cells in the embryo sac of Torenia fournieri Lind. before and during fertilization. Planta 211:158–162

    CAS  PubMed  Google Scholar 

  • Hartig K, Beck E (2006) Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biol (Stuttg) 8:389–396

    CAS  Google Scholar 

  • Heckel T, Werner K, Sheridan WF, Dumas C, Rogowsky PM (1999) Novel phenotypes and developmental arrest in early embryo specific mutants of maize. Planta 210:1–8

    CAS  PubMed  Google Scholar 

  • Hejatko J, Pernisova M, Eneva T, Palme K, Brzobohaty B (2003) The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis. Mol Genet Genomics 269:443–453

    CAS  PubMed  Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483

    CAS  PubMed  Google Scholar 

  • Hill LM, Morley-Smith ER, Rawsthorne S (2003) Metabolism of sugars in the endosperm of developing seeds of oilseed rape. Plant Physiol 131:228–236

    CAS  PubMed  Google Scholar 

  • Hiratsuka R, Yamada Y, Terasaka O (2002) Programmed cell death of Pinus nucellus in response to pollen tube penetration. J Plant Res 115:141–148

    PubMed  Google Scholar 

  • Hong SK, Kitano H, Satoh H, Nagato Y (1996) How is embryo size genetically regulated in rice? Development 122:2051–2058

    CAS  PubMed  Google Scholar 

  • Hughes R, Spielman M, Schruff MC, Larson TR, Graham IA, Scott RJ (2008) Yield assessment of integument-led seed growth following targeted repair of auxin response factor 2. Plant Biotechnol J 6:758–769

    CAS  PubMed  Google Scholar 

  • Huh JH, Bauer MJ, Hsieh TF, Fischer R (2007) Endosperm gene imprinting and seed development. Curr Opin Genet Dev 17:480–485

    CAS  PubMed  Google Scholar 

  • Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM et al (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18:3073–3087

    CAS  PubMed  Google Scholar 

  • Jain M, Chourey PS, Li QB, Pring DR (2008) Expression of cell wall invertase and several other genes of sugar metabolism in relation to seed development in sorghum (Sorghum bicolor). J Plant Physiol 165:331–344

    CAS  PubMed  Google Scholar 

  • Jullien PE, Berger F (2009) Gamete-specific epigenetic mechanisms shape genomic imprinting. Curr Opin Plant Biol 12:637–642

    CAS  PubMed  Google Scholar 

  • Kapil RN, Tiwari SC (1978) The integumentary tapetum. Bot Rev 44:457–490

    Google Scholar 

  • Kawashima T, Goldberg RB (2009) The suspensor: not just suspending the embryo. Trends Plant Sci 15:23–30

    PubMed  Google Scholar 

  • Kennell JC, Horner HT (1985) Influence of the soybean male- sterile gene (msl) on the development of the female gametophyte. Can J Genet Cytol 27:200–209

    Google Scholar 

  • Kinoshita T (2007) Reproductive barrier and genomic imprinting in the endosperm of flowering plants. Genes Genet Syst 82:177–186

    CAS  PubMed  Google Scholar 

  • Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153

    CAS  PubMed  Google Scholar 

  • Kondou Y, Nakazawa M, Kawashima M, Ichikawa T, Yoshizumi T, Suzuki K, Ishikawa A, Koshi T, Matsui R, Muto S et al (2008) RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth. Plant Physiol 147:1924–1935

    CAS  PubMed  Google Scholar 

  • LeClere S, Schmelz EA, Chourey PS (2010) Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol 153:306–318

    CAS  PubMed  Google Scholar 

  • Leduc N, Matthys-Rochon E, Rougier M, Mogensen L, Holm P, Magnard JL, Dumas C (1996) Isolated maize zygotes mimic in vivo embryonic development and express microinjected genes when cultured in vitro. Dev Biol 177:190–203

    CAS  PubMed  Google Scholar 

  • Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep 24:691–698

    CAS  PubMed  Google Scholar 

  • Li Y, Zheng L, Corke F, Smith C, Bevan MW (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev 22:1331–1336

    CAS  PubMed  Google Scholar 

  • Lid SE, Olsen L, Nestestog R, Aukerman M, Brown RC, Lemmon B, Mucha M, Opsahl-Sorteberg HG, Olsen OA (2005) Mutation in the Arabidopisis thaliana DEK1 calpain gene perturbs endosperm and embryo development while over-expression affects organ development globally. Planta 221:339–351

    CAS  PubMed  Google Scholar 

  • Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytol 186:817–831

    CAS  PubMed  Google Scholar 

  • Lombardi L, Casani S, Ceccarelli N, Galleschi L, Picciarelli P, Lorenzi R (2007) Programmed cell death of the nucellus during Sechium edule Sw. seed development is associated with activation of caspase-like proteases. J Exp Bot 58:2949–2958

    CAS  PubMed  Google Scholar 

  • Lombardi L, Ceccarelli N, Picciarelli P, Sorce C, Lorenzi R (2010) Nitric oxide and hydrogen peroxide involvement during programmed cell death of Sechium edule nucellus. Physiol Plant doi:10.1111/j.1399-3054.2010.01381.x

  • Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536

    CAS  PubMed  Google Scholar 

  • Magnard JL, Le Deunff E, Domenech J, Rogowsky PM, Testillano PS, Rougier M, Risueno MC, Vergne P, Dumas C (2000) Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize. Plant Mol Biol 44:559–574

    CAS  PubMed  Google Scholar 

  • Mansfield SG, Briarty LG, Erni S (1991) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can J Bot 69:447–460

    Google Scholar 

  • Marton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–576

    CAS  PubMed  Google Scholar 

  • Massonneau A, Coronado MJ, Audran A, Bagniewska A, Mol R, Testillano PS, Goralski G, Dumas C, Risueno MC, Matthys-Rochon E (2005) Multicellular structures developing during maize microspore culture express endosperm and embryo-specific genes and show different embryogenic potentialities. Eur J Cell Biol 84:663–675

    CAS  PubMed  Google Scholar 

  • Meinke DW, Sussex IM (1979) Embryo-lethal mutants of Arabidopsis thaliana. A model system for genetic analysis of plant embryo development. Dev Biol 72:50–61

    CAS  PubMed  Google Scholar 

  • Melkus G, Rolletschek H, Radchuk R, Fuchs J, Rutten T, Wobus U, Altmann T, Jakob P, Borisjuk L (2009) The metabolic role of the legume endosperm: a noninvasive imaging study. Plant Physiol 151:1139–1154

    CAS  PubMed  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    CAS  PubMed  Google Scholar 

  • Moll C, von Lyncker L, Zimmermann S, Kagi C, Baumann N, Twell D, Grossniklaus U, Gross-Hardt R (2008) CLO/GFA1 and ATO are novel regulators of gametic cell fate in plants. Plant J 56:913–921

    CAS  PubMed  Google Scholar 

  • Monshausen GB, Gilroy S (2009) The exploring root–root growth responses to local environmental conditions. Curr Opin Plant Biol 12:766–772

    CAS  PubMed  Google Scholar 

  • Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45–49

    CAS  PubMed  Google Scholar 

  • Morley-Smith ER, Pike MJ, Findlay K, Kockenberger W, Hill LM, Smith AM, Rawsthorne S (2008) The transport of sugars to developing embryos is not via the bulk endosperm in oilseed rape seeds. Plant Physiol 147:2121–2130

    CAS  PubMed  Google Scholar 

  • Murgia M, Huang B-Q, Tucker SC, Musgrave ME (1993) Embryo sac lacking antipodal cells in Arabidopsis thaliana (Brassicaceae). Am J Bot 80:824–838

    Google Scholar 

  • Neuffer MG, Sheridan WF (1980) Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics 95:929–944

    CAS  PubMed  Google Scholar 

  • Ngo QA, Moore JM, Baskar R, Grossniklaus U, Sundaresan V (2007) Arabidopsis GLAUCE promotes fertilization-independent endosperm development and expression of paternally inherited alleles. Development 134:4107–4117

    CAS  PubMed  Google Scholar 

  • Nonomura K, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N (2003) The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15:1728–1739

    CAS  PubMed  Google Scholar 

  • Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, Schnittger A (2006) A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 38:63–67

    CAS  PubMed  Google Scholar 

  • Nowack MK, Ungru A, Bjerkan KN, Grini PE, Schnittger A (2010) Reproductive cross-talk: seed development in flowering plants. Biochem Soc Trans 38:604–612

    CAS  PubMed  Google Scholar 

  • Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci USA 102:3123–3128

    CAS  PubMed  Google Scholar 

  • Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D et al (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361

    CAS  PubMed  Google Scholar 

  • Okushima Y, Mitina I, Quach HL, Theologis A (2005) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43:29–46

    CAS  PubMed  Google Scholar 

  • Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M, Demesa-Arevalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632

    CAS  PubMed  Google Scholar 

  • Olsen OA (2001) Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol 52:233–267

    CAS  PubMed  Google Scholar 

  • Olsen OA (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16 Suppl:S214–S227

    PubMed  Google Scholar 

  • Oparka KJ, Gates PJ (1982) Ultrasructure of the developing pigment strand of rice (Oryza sativa L.) in relation to its role in solute transport. Protoplasma 113:33–43

    Google Scholar 

  • Opsahl-Ferstad HG, Le Deunff E, Dumas C, Rogowsky PM (1997) ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J 12:235–246

    CAS  PubMed  Google Scholar 

  • Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V (2009) Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324:1684–1689

    CAS  PubMed  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    CAS  PubMed  Google Scholar 

  • Pischke MS, Jones LG, Otsuga D, Fernandez DE, Drews GN, Sussman MR (2002) An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci USA 99:15800–15805

    CAS  PubMed  Google Scholar 

  • Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Haughn GW, Fischer RL (1995) The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83:735–742

    CAS  PubMed  Google Scholar 

  • Richter GL, Monshausen GB, Krol A, Gilroy S (2009) Mechanical stimuli modulate lateral root organogenesis. Plant Physiol 151:1855–1866

    CAS  PubMed  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    CAS  PubMed  Google Scholar 

  • Robinson-Beers K, Pruitt RE, Gasser CS (1992) Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell 4:1237–1249

    PubMed  Google Scholar 

  • Rotman N, Gourgues M, Guitton AE, Faure JE, Berger F (2008) A dialogue between the SIRENE pathway in synergids and the fertilization independent seed pathway in the central cell controls male gamete release during double fertilization in Arabidopsis. Mol Plant 1:659–666

    CAS  PubMed  Google Scholar 

  • Russell SD (1979) Fine structure of the megagametophyte of Zea mays. Can J Bot 57:1093–1110

    Google Scholar 

  • Schreiber L (2005) Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot 95:1069–1073

    PubMed  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261

    CAS  PubMed  Google Scholar 

  • Schulz P, Jensen WA (1971) Capsella embryogenesis: the chalazal proliferating tissue. J Cell Sci 8:201–227

    CAS  PubMed  Google Scholar 

  • Schulz P, Jensen WA (1973) Capsella embryogenesis: the central cell. J Cell Sci 12:741–763

    CAS  PubMed  Google Scholar 

  • Schulz P, Jensen WA (1974) Capsella embryogenesis: the development of the free nuclear endosperm. Protoplasma 80:183–205

    Google Scholar 

  • Schuurmans JA, van Dongen JT, Rutjens BP, Boonman A, Pieterse CM, Borstlap AC (2003) Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Mol Biol 53:633–645

    CAS  PubMed  Google Scholar 

  • Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329–3341

    CAS  PubMed  Google Scholar 

  • Seifert GJ, Blaukopf C (2010) Irritable walls: the plant extracellular matrix and signaling. Plant Physiol 153:467–478

    CAS  PubMed  Google Scholar 

  • Sergeeva LI, Keurentjes JJ, Bentsink L, Vonk J, van der Plas LH, Koornneef M, Vreugdenhil D (2006) Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc Natl Acad Sci USA 103:2994–2999

    CAS  PubMed  Google Scholar 

  • Sheridan WF, Neuffer MG (1980) Defective kernel mutants of maize II. Morphological and embryo culture studies. Genetics 95:945–960

    CAS  PubMed  Google Scholar 

  • Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM (2003) Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot 54:525–531

    CAS  PubMed  Google Scholar 

  • Sprunck S (2010) Let's get physical: gamete interaction in flowering plants. Biochem Soc Trans 38:635–640

    CAS  PubMed  Google Scholar 

  • Srivastava R, Liu JX, Howell SH (2008) Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis. Plant J 56:219–227

    CAS  PubMed  Google Scholar 

  • Stadler R, Lauterbach C, Sauer N (2005) Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiol 139:701–712

    CAS  PubMed  Google Scholar 

  • Stewart-Cox JA, Britton NF, Mogie M (2004) Endosperm triploidy has a selective advantage during ongoing parental conflict by imprinting. Proc Biol Sci 271:1737–1743

    CAS  PubMed  Google Scholar 

  • Tanaka H, Onouchi H, Kondo M, Hara-Nishimura I, Nishimura M, Machida C, Machida Y (2001) A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 128:4681–4689

    CAS  PubMed  Google Scholar 

  • Tanaka T, Tanaka H, Machida C, Watanabe M, Machida Y (2004) A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. Plant J 37:139–146

    CAS  PubMed  Google Scholar 

  • Tanaka H, Watanabe M, Sasabe M, Hiroe T, Tanaka T, Tsukaya H, Ikezaki M, Machida C, Machida Y (2007) Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis in Arabidopsis. Development 134:1643–1652

    CAS  PubMed  Google Scholar 

  • Tang XC, He YQ, Wang Y, Sun MX (2006) The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. J Exp Bot 57:2639–2650

    CAS  PubMed  Google Scholar 

  • Tsuwamoto R, Fukuoka H, Takahata Y (2008) GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for the normal development of the epidermal surface in Arabidopsis embryos. Plant J 54:30–42

    CAS  PubMed  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D et al (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    CAS  PubMed  Google Scholar 

  • Ungru A, Nowack MK, Reymond M, Shirzadi R, Kumar M, Biewers S, Grini PE, Schnittger A (2008) Natural variation in the degree of autonomous endosperm formation reveals independence and constraints of embryo growth during seed development in Arabidopsis thaliana. Genetics 179:829–841

    CAS  PubMed  Google Scholar 

  • Uyttewaal M, Traas J, Hamant O (2010) Integrating physical stress, growth, and development. Curr Opin Plant Biol 13:46–52

    CAS  PubMed  Google Scholar 

  • Van Hengel AJ, Van Kammen A, De Vries SC (2002) A relationship between seed development, Arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiol Plant 114:637–644

    PubMed  Google Scholar 

  • Vert G, Walcher CL, Chory J, Nemhauser JL (2008) Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc Natl Acad Sci USA 105:9829–9834

    CAS  PubMed  Google Scholar 

  • Vilhar B, Kladnik A, Blejec A, Chourey PS, Dermastia M (2002) Cytometrical evidence that the loss of seed weight in the miniature1 seed mutant of maize is associated with reduced mitotic activity in the developing endosperm. Plant Physiol 129:23–30

    CAS  PubMed  Google Scholar 

  • von Besser K, Frank AC, Johnson MA, Preuss D (2006) Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133:4761–4769

    Google Scholar 

  • Von Groll U, Berger D, Altmann T (2002) The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. Plant Cell 14:1527–1539

    Google Scholar 

  • Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, James Peacock W, Dennis ES, Luo M (2010) The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J. doi:10.1111/j.1365-313X.2010.04271.x

  • Watanabe M, Tanaka H, Watanabe D, Machida C, Machida Y (2004) The ACR4 receptor-like kinase is required for surface formation of epidermis-related tissues in Arabidopsis thaliana. Plant J 39:298–308

    CAS  PubMed  Google Scholar 

  • Weber H, Borisjuk L, Heim U, Sauer N, Wobus U (1997) A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell 9:895–908

    CAS  PubMed  Google Scholar 

  • Weijers D, Van Hamburg JP, Van Rijn E, Hooykaas PJ, Offringa R (2003) Diphtheria toxin-mediated cell ablation reveals interregional communication during Arabidopsis seed development. Plant Physiol 133:1882–1892

    CAS  PubMed  Google Scholar 

  • Weschke W, Panitz R, Gubatz S, Wang Q, Radchuk R, Weber H, Wobus U (2003) The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant J 33:395–411

    CAS  PubMed  Google Scholar 

  • Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16 Suppl:S133–S141

    PubMed  Google Scholar 

  • Yang WC, Ye D, Xu J, Sundaresan V (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:2108–2117

    CAS  PubMed  Google Scholar 

  • Yang J, Zhang J, Huang Z, Wang Z, Zhu Q, Liu L (2002) Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann Bot 90:369–377

    CAS  PubMed  Google Scholar 

  • Yang S, Johnston N, Talideh E, Mitchell S, Jeffree C, Goodrich J, Ingram G (2008) The endosperm-specific ZHOUPI gene of Arabidopsis thaliana regulates endosperm breakdown and embryonic epidermal development. Development 135:3501–3509

    CAS  PubMed  Google Scholar 

  • Zee SY, O'Brien TP (1970) Studies on the ontogeny of the pigment strand in the caryopsis of wheat. Aust J Biol 23:1153–1171

    Google Scholar 

  • Zhao X, de Palma J, Oane R, Gamuyao R, Luo M, Chaudhury A, Herve P, Xue Q, Bennett J (2008) OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J 54:375–387

    CAS  PubMed  Google Scholar 

  • Zhou Y, Ni M (2010) SHORT HYPOCOTYL UNDER BLUE1 truncations and mutations alter its association with a signaling protein complex in Arabidopsis. Plant Cell 22:703–715

    CAS  PubMed  Google Scholar 

  • Zhou Y, Zhang X, Kang X, Zhao X, Ni M (2009) SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell 21:106–117

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Professor Alison Smith (John Innes Centre, Norwich), Dr Peter Rogowsky (RDP, ENS-Lyon) and Dr Justin Goodrich, Jessica Fitzgibbon and Andrew Waters (University of Edinburgh) for discussions and helpful comments on the manuscript. GI was supported by an RCUK Fellowship.

Conflict of interest

The author declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwyneth Christina Ingram.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingram, G.C. Family life at close quarters: communication and constraint in angiosperm seed development. Protoplasma 247, 195–214 (2010). https://doi.org/10.1007/s00709-010-0184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0184-y

Keywords

Navigation