Skip to main content
Log in

Interfacial micromechanics study on contact modeling for bolted joints

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Bolted joints represent the discontinuity of the assembled structures, so their contact characteristics contribute significantly to the overall static and dynamic performances of the mechanical system. For the multi-scale geometrical properties of contacting surfaces, an interfacial micromechanics modeling method is proposed to predict contact characteristics using the fractal theory. Meanwhile, the interaction effect caused by the successive tightening of multiple bolts is incorporated into the contact analysis, which characterizes the residual preload of bolts to improve the contact load model. Three contact models for the bolted joint are examined by combining the interfacial micromechanics model with the transfer matrix method for multi-body systems, the finite element method, and the virtual material method. A comparison with the experimental data of a dumbbell-shaped bolted structure is conducted to validate the contact models and estimate their practicality and accuracy. The models show their advantages and drawbacks, which depend on the complexity of the bolted structure, the requirements of computational efficiency, and the research focus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data and material generated or analyzed during this study are available from the corresponding author on reasonable request.

Code availability

The code generated or analyzed during this study is available from the corresponding author on reasonable request.

Abbreviations

\(A_{a}\) :

Nominal contact area of joint, m2

\(A_{b1}\) :

Nominal cross-sectional area of bolt, m2

\(A_{rf}\) :

Real contact area of joint, m2

\(a\) :

Contact area of asperity, m2

\(a^{\prime}\) :

Truncated area of asperity, m2

\(a^{\prime}_{c}\) :

Critical truncated area, m2

\(a^{\prime}_{l}\) :

Largest truncated area of asperity, m2

\({\varvec{B}}\) :

Strain–displacement matrix

\(b\) :

Width of interface, m

\(D\) :

Fractal dimension

\({\varvec{D}}_{e}\) :

Elastic matrix

\(d\) :

Distance from bolt hole, m

\(\overline{E}\) :

Equivalent elastic modulus, Pa

\(E_{bi}\) :

Elastic modulus of bolt #\(i\), Pa

\(E_{V}\) :

Elastic modulus of virtual material layer, Pa

\(E_{Ve} ,E_{{Vep}{\varvec{I}}} ,E_{{Vep}{\varvec{II}}}\) :

Total elastic moduli in elastic and elastic–plastic stages, Pa

\(e_{e} ,e_{{ep}{\varvec{I}}} ,e_{{ep}{\varvec{II}}}\) :

Elastic moduli of asperity in elastic and elastic–plastic stages, Pa

\(F_{i}\) :

Preloads applied to bolt #\(i\), N

\(F_{i,\;n}\) :

Residual preload of bolt #\(i\) after tightening \(n\) bolts, N

\(G\) :

Fractal roughness parameter, m

\(\overline{G}\) :

Equivalent shear modulus, Pa

\(G_{V}\) :

Shear modulus of virtual material layer, Pa

\(G_{Ve} ,G_{{Vep}{\varvec{I}}} ,G_{{Vep}{\varvec{II}}}\) :

Total shear moduli in elastic and elastic–plastic stages, Pa

\(g_{e} ,g_{{ep}{\varvec{I}}} ,g_{{ep}{\varvec{II}}}\) :

Shear moduli of asperity in elastic and elastic–plastic stages, Pa

\(H\) :

Hardness, Pa

\(H_{c}\) :

Hardness coefficient

\(h\) :

Thickness of virtual material layer, m

\(h_{1} ,h_{2}\) :

Thicknesses of two asperity layers, m

\({\varvec{J}}\) :

Jacobian matrix

\({\boldsymbol{J}}_{Body}\) :

Inertia matrix

\({\varvec{K}}_{B} ,{\varvec{K}}_{C}\) :

Structural stiffness matrixes of Model B and C

\(K_{bi}\) :

Stiffness of bolt #\(i\), N/m

\(K_{i,i}\) :

Local compression stiffness at bolt hole #\(i\), N/m

\(K_{i,j}\) :

Interaction stiffness between bolt #\(i\) and bolt #\(j\), N/m

\(K_{jx} ,\;K_{jy} ,\;K_{jz}\) :

Stiffness coefficients of the \(jth\) set of springs in three directions, N/m

\(K_{ne} ,K_{{nep}{\varvec{I}}} ,K_{{nep}{\varvec{II}}}\) :

Total normal contact stiffnesses at different stages, N/m

\({\boldsymbol{K}}_{L} ,\;{\boldsymbol{K}}_{R}\) :

Longitudinal stiffness matrix and rotary stiffness matrix

\(K_{Lx} ,K_{Ly} ,K_{Lz}\) :

Longitudinal stiffnesses in three directions, N/m

\({\varvec{K}}_{P1} ,{\varvec{K}}_{P2}\) :

Stiffness matrixes of Parts #1 and #2

\(K_{Rx} ,\;K_{Ry} ,\;K_{Rz}\) :

Rotary stiffnesses in three directions, Nm/rad

\({\varvec{K}}_{S}\) :

Stiffness matrix of all spring elements

\({\varvec{K}}_{Sj}^{e}\) :

Stiffness matrix of the \(jth\) group spring elements

\(K_{te} ,K_{{tep}{\varvec{I}}} ,K_{{tep}{\varvec{II}}}\) :

Total tangential contact stiffnesses at different stages, N/m

\({\varvec{K}}_{V}\) :

Stiffness matrix of virtual material layer

\({\varvec{K}}_{Vi}^{e}\) :

Stiffness matrix of element \(i\)

\(k_{ne} ,k_{{nep}{\varvec{I}}} ,k_{{nep}{\varvec{II}}}\) :

Normal contact stiffnesses of asperities at different stages, N/m

\(k_{t}\) :

Tangential contact stiffness of asperity, N/m

\(L_{b1}\) :

Effective bolt length, m

\(l\) :

Length of interface, m

\({\tilde{\boldsymbol{l}}}_{IC} ,{\tilde{\boldsymbol{l}}}_{IO}\) :

Coordinates cross-product matrixes of mass center \(C\) and output end \(O\)

\({\varvec{M}}_{B} ,{\varvec{M}}_{C}\) :

Structural mass matrixes of Model B and C

\({\varvec{M}}_{P1} ,{\varvec{M}}_{P2}\) :

Mass matrixes of Parts #1 and #2

\({\varvec{M}}_{V}\) :

Mass matrix of virtual material layer

\({\varvec{M}}_{Vi}^{e}\) :

Mass matrix of element \(i\)

\({\varvec{N}}\) :

Displacement interpolation matrix

\(P_{e} ,P_{{ep}{\varvec{I}}} ,P_{{ep}{\varvec{II}}} ,P_{p}\) :

Total normal contact loads at different stages, N

\(p_{e} ,p_{{ep}{\varvec{I}}} ,p_{{ep}{\varvec{II}}} ,p_{p}\) :

Normal contact loads of asperities at different stages, N

\(p_{re} ,p_{repi}\) :

Real normal contact pressures of asperities, Pa

\(R\) :

Equivalent radius of asperity, m

\(r\) :

Contact radius of asperity, m

\(r^{\prime}\) :

Truncated radius of asperity, m

\(T\) :

Tangential load, N

\(T_{e} ,T_{{ep}{\varvec{I}}} ,T_{{ep}{\varvec{II}}}\) :

Total tangential contact loads, N

\(t\) :

Tangential contact load of asperity, N

\({\boldsymbol{U}}_{{Part}\_1} ,{\boldsymbol{U}}_{{Part}\_2}\) :

Transfer matrixes for Parts #1 and #2

\({\mathbf{U}}_{Hinge}\) :

Transfer matrix for hinge

\({\varvec{u}}\) :

Nodal displacement matrix

\(v\) :

Poisson ratio of the softer material

\(\overline{v}\) :

Equivalent Poisson ratio

\(v_{V}\) :

Poisson ratio of virtual material layer

\({\boldsymbol{Z}}_{I} ,{\boldsymbol{Z}}_{O}\) :

State vectors of input end \(I\) and output end \(O\)

\(\Delta F_{1,2}\) :

Preload variation of bolt #1 caused by tightening bolt #2, N

\(\Delta u_{1,2}\) :

Deformation variation of bolt hole #1 caused by tightening bolt #2, m

\(\Delta u_{b1,2}\) :

Deformation variation of bolt #1 caused by tightening bolt #2, m

\(\delta\) :

Asperity interference, m

\(\delta_{c}\) :

Critical interference, m

\(\delta_{t}\) :

Tangential interference, m

\(\gamma\) :

Spatial frequency spectrum parameter

\(\mu\) :

Friction coefficient

\(\rho_{V}\) :

Density of virtual material layer, kg/m3

\(\rho_{1} ,\;\rho_{2}\) :

Densities of Parts #1 and #2, kg/m3

\(\psi\) :

Domain extension factor

*:

Dimensionless form

References

  1. Qu, C., Wu, L., Ma, J., Xia, Q., Ma, S.: A fractal model of normal dynamic parameters for fixed oily porous media joint interface in machine tools. Int. J. Adv. Manuf. Technol. 68(9), 2159–2167 (2013). https://doi.org/10.1007/s00170-013-4825-0

    Article  Google Scholar 

  2. Zare, I., Allen, M.S.: Adapting a contact-mechanics algorithm to predict damping in bolted joints using quasi-static modal analysis. Int. J. Mech. Sci. 189, 105982 (2021). https://doi.org/10.1016/j.ijmecsci.2020.105982

    Article  Google Scholar 

  3. Wang, D., Zhang, Z.: A four-parameter model for nonlinear stiffness of a bolted joint with non-Gaussian surfaces. Acta Mech. 231(5), 1963–1976 (2020). https://doi.org/10.1007/s00707-020-02635-5

    Article  MathSciNet  Google Scholar 

  4. Liu, J., Chalivendra, V., Huang, W.: Finite element based contact analysis of radio frequency MEMs switch membrane surfaces. J. Micromech. Microeng. 27(10), 105012 (2017). https://doi.org/10.1088/1361-6439/aa87cc

    Article  Google Scholar 

  5. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 295(1442), 300–319 (1966). https://doi.org/10.1098/rspa.1966.0242

    Article  Google Scholar 

  6. Greenwood, J.A., Tripp, J.H.: The elastic contact of rough spheres. J. Appl. Mech. 34(1), 153–159 (1967). https://doi.org/10.1115/1.3607616

    Article  Google Scholar 

  7. Greenwood, J.A., Tripp, J.H.: The contact of two nominally flat rough surfaces. Proc. Inst. Mech. Eng. 185(1), 625–633 (1970). https://doi.org/10.1243/pime_proc_1970_185_069_02

    Article  Google Scholar 

  8. Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35(1), 87–111 (1975). https://doi.org/10.1016/0043-1648(75)90145-3

    Article  Google Scholar 

  9. McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear 107(1), 37–60 (1986). https://doi.org/10.1016/0043-1648(86)90045-1

    Article  Google Scholar 

  10. Wang, G.F., Long, J.M., Feng, X.Q.: A self-consistent model for the elastic contact of rough surfaces. Acta Mech. 226(2), 285–293 (2014). https://doi.org/10.1007/s00707-014-1177-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, Z., Fu, W., Wang, W.: Normal contact damping model of mechanical interface considering asperity shoulder-to-shoulder contact and interaction. Acta Mech. 230(7), 2413–2424 (2019). https://doi.org/10.1007/s00707-019-02392-0

    Article  MathSciNet  Google Scholar 

  12. Wang, H., Jia, P., Wang, L., Yun, F., Wang, G., Wang, X., Liu, M.: Research on the loading–unloading fractal contact model between two three-dimensional spherical rough surfaces with regard to friction. Acta Mech. 231(10), 4397–4413 (2020). https://doi.org/10.1007/s00707-020-02787-4

    Article  MathSciNet  Google Scholar 

  13. Majumdar, A., Bhushan, B.: Fractal model of elastic-plastic contact between rough surfaces. ASME J. Tribol. 113(1), 1–11 (1991). https://doi.org/10.1115/1.2920588

    Article  Google Scholar 

  14. Li, Q., Kim, K.S.: Micromechanics of rough surface adhesion: a homogenized projection method. Acta Mech. Solida Sin. 22(5), 377–390 (2009). https://doi.org/10.1016/S0894-9166(09)60288-3

    Article  Google Scholar 

  15. Komvopoulos, K., Ye, N.: Three-dimensional contact analysis of elastic-plastic layered media with fractal surface topographies. ASME J. Tribol. 123(3), 632–640 (2000). https://doi.org/10.1115/1.1327583

    Article  Google Scholar 

  16. Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84(7), 3617–3624 (1998). https://doi.org/10.1063/1.368536

    Article  Google Scholar 

  17. Liang, X.M., Wang, G.F.: A friction model of fractal rough surfaces accounting for size dependence at nanoscale. Acta Mech. 233(1), 69–81 (2022). https://doi.org/10.1007/s00707-021-03109-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Zong, K., Qin, Z., Chu, F.: Modeling of frictional stick-slip of contact interfaces considering normal fractal contact. J. Appl. Mech. 89(3), 031003 (2022). https://doi.org/10.1115/1.4052882

    Article  Google Scholar 

  19. Chang, W.R., Etsion, I., Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. ASME J. Tribol. 109(2), 257–263 (1987). https://doi.org/10.1115/1.3261348

    Article  Google Scholar 

  20. Zhao, Y., Maietta, D.M., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. ASME J. Tribol. 122(1), 86–93 (2000). https://doi.org/10.1115/1.555332

    Article  Google Scholar 

  21. Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69(5), 657–662 (2002). https://doi.org/10.1115/1.1490373

    Article  MATH  Google Scholar 

  22. Kogut, L., Etsion, I.: A Finite element based elastic-plastic model for the contact of rough surfaces. Tribol. Trans. 46(3), 383–390 (2003). https://doi.org/10.1080/10402000308982641

    Article  Google Scholar 

  23. Liang, Y., Chen, W., Sun, Y., Chen, G., Wang, T., Sun, Y.: Dynamic design approach of an ultra-precision machine tool used for optical parts machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226(11), 1930–1936 (2012). https://doi.org/10.1177/0954405412458998

    Article  Google Scholar 

  24. Liang, Y., Chen, W., Sun, Y., Luo, X., Lu, L., Liu, H.: A mechanical structure-based design method and its implementation on a fly-cutting machine tool design. Int. J. Adv. Manuf. Technol. 70(9–12), 1915–1921 (2013). https://doi.org/10.1007/s00170-013-5436-5

    Article  Google Scholar 

  25. Jiang, K., Liu, Z., Yang, C., Zhang, C., Tian, Y., Zhang, T.: Effects of the joint surface considering asperity interaction on the bolted joint performance in the bolt tightening process. Tribol. Int. 167, 107408 (2022). https://doi.org/10.1016/j.triboint.2021.107408

    Article  Google Scholar 

  26. Wang, R., Zhu, L., Zhu, C.: Research on fractal model of normal contact stiffness for mechanical joint considering asperity interaction. Int. J. Mech. Sci. 134, 357–369 (2017). https://doi.org/10.1016/j.ijmecsci.2017.10.019

    Article  Google Scholar 

  27. Liu, X., Sun, W., Liu, H., Du, D., Ma, H.: Nonlinear vibration modeling and analysis of bolted thin plate based on non-uniformly distributed complex spring elements. J. Sound Vib. 527, 116883 (2022). https://doi.org/10.1016/j.jsv.2022.116883

    Article  Google Scholar 

  28. Tian, H.L., Li, B., Liu, H.Q., Mao, K.M., Peng, F.Y., Huang, X.L.: A new method of virtual material hypothesis-based dynamic modeling on fixed joint interface in machine tools. Int. J. Mach. Tools Manuf. 51(3), 239–249 (2011). https://doi.org/10.1016/j.ijmachtools.2010.11.004

    Article  Google Scholar 

  29. An, C., Wei, R., Wang, Z., Xu, Q., Lei, X., Zhang, J.: Investigation on dynamic performance of ultra-precision flycutting machine tool based on virtual material method. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 235(9), 1473–1482 (2021). https://doi.org/10.1177/0954405421990134

    Article  Google Scholar 

  30. Zhang, Z., Xiao, Y., Xie, Y., Su, Z.: Effects of contact between rough surfaces on the dynamic responses of bolted composite joints: multiscale modeling and numerical simulation. Compos. Struct. 211, 13–23 (2019). https://doi.org/10.1016/j.compstruct.2018.12.019

    Article  Google Scholar 

  31. Zhou, Y., Xiao, Y., He, Y., Zhang, Z.: A detailed finite element analysis of composite bolted joint dynamics with multiscale modeling of contacts between rough surfaces. Compos. Struct. 236, 111874 (2020). https://doi.org/10.1016/j.compstruct.2020.111874

    Article  Google Scholar 

  32. Wang, Y.Q., Wu, J.K., Liu, H.B., Kuang, K., Cui, X.W., Han, L.S.: Analysis of elastic interaction stiffness and its effect on bolt preloading. Int. J. Mech. Sci. 130, 307–314 (2017). https://doi.org/10.1016/j.ijmecsci.2017.05.032

    Article  Google Scholar 

  33. Rui, X., Wang, G., Zhang, J.: Transfer matrix method for multibody systems: theory and applications. Wiley, Hoboken (2018)

    MATH  Google Scholar 

  34. Chang, Y., Ding, J.G., He, Z.F., Shehzad, A., Ding, Y.Y., Lu, H.J., Zhuang, H., Chen, P., Zhang, Y., Zhang, X.X., Chen, Y.H.: Effect of joint interfacial contact stiffness on structural dynamics of ultra-precision machine tool. Int. J. Mach. Tools Manuf. 158, 103609 (2020). https://doi.org/10.1016/j.ijmachtools.2020.103609

    Article  Google Scholar 

  35. Zou, Q., Sun, T.S., Nassar, S., Barber, G.C., El-Khiamy, H., Zhu, D.: Contact mechanics approach to determine effective radius in bolted joints. ASME J. Tribol. 127(1), 30–36 (2005). https://doi.org/10.1115/1.1829717

    Article  Google Scholar 

  36. Hui, Y., Huang, Y.M., Li, P.Y., Li, Y., Bai, L.J.: Virtual material parameter acquisition based on the basic characteristics of the bolt joint interfaces. Tribol. Int. 95, 109–117 (2016). https://doi.org/10.1016/j.triboint.2015.11.013

    Article  Google Scholar 

  37. Young, Y.L.: Time-dependent hydroelastic analysis of cavitating propulsors. J. Fluids Struct. 23(2), 269–295 (2007). https://doi.org/10.1016/j.jfluidstructs.2006.09.003

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science Challenge Project (No. JDZZ2016006-0102). Author Yu Chang has received support from China Scholarship Council (No. 202106840001).

Author information

Authors and Affiliations

Authors

Contributions

YC and HF were involved in the conceptualization and methodology; YC contributed to the formal analysis and investigation; YC assisted in the writing—original draft preparation; HF and JD were involved in writing—review and editing; JD and YC acquired the funding; JD contributed to resources; JD and HF were involved in the supervision.

Corresponding author

Correspondence to Jianguo Ding.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Consent for publication

All authors have reviewed the final version of the manuscript and approved it for publication.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Ding, J. & Fan, H. Interfacial micromechanics study on contact modeling for bolted joints. Acta Mech 234, 3377–3396 (2023). https://doi.org/10.1007/s00707-023-03562-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03562-x

Navigation