Skip to main content
Log in

An acoustic model of a Helmholtz resonator under a grazing turbulent boundary layer

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Acoustic models of resonant duct systems with turbulent flow depend on fitted constants based on expensive experimental test series. We introduce a new model of a resonant cavity, flush mounted in a duct or flat plate, under grazing turbulent flow. Based on previous work by Goody, Howe and Golliard, we present a more universal model where the constants are replaced by physically significant parameters. This enables the user to understand and to trace back how a modification of design parameters (geometry, fluid condition) will affect acoustic properties. The derivation of the model is supported by a detailed three-dimensional direct numerical simulation as well as an experimental test series. We show that the model is valid for low Mach number flows (\(M=0.01{-}0.14\)) and for low frequencies (below higher transverse cavity modes). Hence, within this range, no expensive simulation or experiment is needed any longer to predict the sound spectrum. In principle, the model is applicable to arbitrary geometries: Just the provided definitions need to be applied to update the significant parameters. Utilizing the lumped-element method, the model consists of exchangeable elements and guarantees a flexible use. Even though the model is linear, resonance conditions between acoustic cavity modes and fluid dynamic unstable modes are correctly predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

\(Re_\tau \) :

Friction Reynolds number \(u_{\tau } \delta _{99} / \nu =\delta _{99} / \delta _{\nu }\).

\(St_\mathrm{TBL}\) :

Strouhal number of the TBL \(\omega \,\delta _{99}/u_{0}\).

\(St_\mathrm{neck}\) :

Strouhal number of the neck \(\omega \,L_{x,\mathrm{neck}}/u_{+}\) (Eq. (12)).

Y :

Characteristic impedance \(Y=S/\rho c\) of a duct with the constant cross section S.

Z :

Complex-valued acoustic impedance \(Z=(r+i k l)Y\).

\(\beta \) :

Frequency-dependent tuning of the opening impedance amplitude (Eq. (16)).

\(\delta _\nu \) :

Viscous lengthscale \(\nu /u_{\tau }\).

\(\delta _{99,\mathrm{neck}}\) :

Boundary layer thickness \(\delta _{99}\) at the neck center (Fig. 1).

\(\delta _{99}\) :

Boundary layer thickness \(u(y=\delta _{99})=0.99\,u_{0}\).

\(\tau _w\) :

Wall shear stress \(\rho _w \nu \, \mathrm{d}/\mathrm{d}y{<}u_x{>}|_{y=y_w}\).

l :

Acoustic reactance (length correction).

r :

Acoustic resistance (excitation or damping).

\(u_{+}\) :

Vortex sheet convection velocity (Eq. (15)).

\(u_{0}\) :

Free stream velocity.

\(u_{\tau }\) :

Wall friction velocity \(\sqrt{\tau _{w}/\rho _w}\).

v :

Acoustic volume flux.

References

  1. Kook, H., Mongeau, L.: Analysis of the periodic pressure fluctuations induced by flow over a cavity. J. Sound Vib. 251(5), 823–846 (2002)

    Article  Google Scholar 

  2. Golliard, J.: Noise of Helmholtz-resonator like cavities excited by a low Mach-number turbulent flow. Ph.D. thesis, University of Poitiers (2002)

  3. Hémon, P., Santi, F., Amandolèse, X.: On the pressure oscillations inside a deep cavity excited by a grazing airflow. Eur. J. Mech. B/Fluids 23(4), 617–632 (2004)

    Article  MATH  Google Scholar 

  4. Dequand, S., Luo, X., Willems, J., Hirschberg, A.: Helmholtz-like resonator self-sustained oscillations, part 1: acoustical measurements and analytical models. AIAA J. 41(3), 408–415 (2003)

    Article  Google Scholar 

  5. Rossiter, J.: Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronautical Research Council Reports and Memoranda 3438 (1964)

  6. Tam, C., Block, P.: On the tones and pressure oscillations induced by flow over rectangular cavities. J. Fluid Mech. 89(02), 373 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Howe, M.S.: The influence of mean shear on unsteady aperture flow, with application to acoustical diffraction and self-sustained cavity oscillations. J. Fluid Mech. 109(–1), 125 (1981)

    Article  MATH  Google Scholar 

  8. Howe, M.S.: On the theory of unsteady shearing flow over a slot. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 303(1475), 151–180 (1981b)

    Article  MATH  Google Scholar 

  9. Stein, L., Reiss, J., Sesterhenn, J.: Numerical simulation of a resonant cavity: acoustical response under grazing turbulent flow. New Results Numer. Exp. Fluid Mech. XI 136, 671–681 (2018)

    Article  Google Scholar 

  10. Tam, C., Ju, H., Jones, M., Watson, W., Parrott, T.: A computational and experimental study of slit resonators. J. Sound Vib. 284, 947–984 (2005)

    Article  MATH  Google Scholar 

  11. Tam, C.K., Ju, H., Jones, M., Watson, W., Parrott, T.: A computational and experimental study of resonators in three dimensions. J. Sound Vib. 329(24), 5164–5193 (2010)

    Article  Google Scholar 

  12. Roche, J.M., Leylekian, L., Delattre, G., Vuillot, F.: Aircraft fan noise absorption: DNS of the acoustic dissipation of resonant liners. In: 30th AIAA Aeroacoustics Conference (2009)

  13. Eldredge, J., Bodony, D., Shoeybi, M.: Numerical investigation of the acoustic behavior of a multi-perforated liner. In: 28th AIAA Aeroacoustics Conference. American Institute of Aeronautics and Astronautics (2007)

  14. Roche, J., Vuillot, F., Leylekian, L.: Numerical and experimental study of resonant liners aeroacoustic absorption under grazing flow. AIAA Paper 16, 1–18 (2010)

    Google Scholar 

  15. Munjal, M.L.: Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design. Wiley, New York (1987)

    Google Scholar 

  16. Goody, M.: Empirical spectral model of surface pressure fluctuations. AIAA J. 42(9), 1788–1794 (2004)

    Article  Google Scholar 

  17. Hwang, Y., Bonness, W.K., Hambric, S.A.: Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra. J. Sound Vib. 319(1–2), 199–217 (2009)

    Article  Google Scholar 

  18. Chase, D.: The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model. J. Sound Vib. 112(1), 125–147 (1987)

    Article  Google Scholar 

  19. Howe, M.S.: Acoustics of Fluid-Structure Interactions. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  20. Grace, S.M., Horan, K.P., Howe, M.S.: The influence of shape on the Rayleigh conductivity of a wall aperture in the presence of grazing flow. J. Fluids Struct. 12(3), 335–351 (1998)

    Article  Google Scholar 

  21. Peat, K.S., Ih, J.G., Lee, S.H.: The acoustic impedance of a circular orifice in grazing mean flow: comparison with theory. J. Acoust. Soc. Am. 114(6), 3076–3086 (2003)

    Article  Google Scholar 

  22. Blake, W.K.: Turbulent boundary-layer wall-pressure fluctuations on smooth and rough walls. J. Fluid Mech. 44(04), 637 (1970)

    Article  Google Scholar 

  23. Alamo, J.C., Jiménez, J.: Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 5 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Goldschmidt, V.W., Young, M.F., Ott, E.S.: Turbulent convective velocities (broadband and wavenumber dependent) in a plane jet. J. Fluid Mech. 105(–1), 327 (1981)

    Article  Google Scholar 

  25. Viazzo, S., Dejoan, A., Schiestel, R.: Spectral features of the wall-pressure fluctuations in turbulent wall flows with and without perturbations using LES. Int. J. Heat Fluid Flow 22(1), 39–52 (2001)

    Article  Google Scholar 

  26. Gloerfelt, X., Berland, J.: Turbulent boundary-layer noise: direct radiation at Mach number 0.5. J. Fluid Mech. 723, 318–351 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu, N., Appel, C., Herr, M., Ewert, R., Reiche, N.: Numerical study of wall pressure fluctuations for zero and non-zero pressure gradient turbulent boundary layers. In: 22nd AIAA/CEAS Aeroacoustics Conference (2016)

  28. Arguillat, B., Ricot, D., Bailly, C., Robert, G.: Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations. J. Acoust. Soc. Am. 128, 1647–1655 (2010)

    Article  Google Scholar 

  29. Kim, J., Hussain, F.: Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A Fluid Dyn. 5(3), 695–706 (1993)

    Article  Google Scholar 

  30. Schmid, P.J.: Stability and Transition in Shear Flows. Springer, Berlin (2012)

    Google Scholar 

  31. Pope, S.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  32. Yang, Y., Rockwell, D., Lai-Fook Cody, K., Pollack, M.: Generation of tones due to flow past a deep cavity: effect of streamwise length. J. Fluids Struct. 25(2), 364–388 (2009)

    Article  Google Scholar 

  33. Förner, K., Tournadre, J., Martinez-Lera, P., Polifke, W.: Scattering to higher harmonics for quarter wave and Helmholtz resonators. AIAA J. 55(4), 1194–1204 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (SE824/29-1) and the provision of computational resources by the High-Performance Computing Center Stuttgart (ACID11700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewin Stein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, L., Sesterhenn, J. An acoustic model of a Helmholtz resonator under a grazing turbulent boundary layer. Acta Mech 230, 2013–2029 (2019). https://doi.org/10.1007/s00707-018-2354-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2354-5

Navigation