Skip to main content
Log in

Dynamic analysis of carbon nanotubes under electrostatic actuation using modified couple stress theory

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Modified couple stress theory is a size-dependent theorem capturing the micro/nanoscale effects influencing the mechanical behaviors of the micro- and nanostructures. In this paper, it is applied to investigate the nonlinear vibration of carbon nanotubes under step DC voltage. The vibration, natural frequencies and dynamic pull-in characteristics of the carbon nanotubes are studied in detail. Moreover, the effects of various boundary conditions and geometries are scrutinized on the dynamic characteristics. The results reveal that application of this theory leads to the higher values of the natural frequencies and dynamic pull-in voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ren Z., Lan Y., Wang Y.: Aligned Carbon Nanotubes. Springer, Berlin (2013)

    Book  Google Scholar 

  2. Fakhrabadi M.M.S., Khani N., Omidvar R., Rastgoo A.: Investigation of elastic and buckling properties of carbon nanocones using molecular mechanics approach. Comput. Mater. Sci. 61, 248–256 (2012)

    Article  Google Scholar 

  3. Fakhrabadi M.M.S., Khorasani P.K., Rastgoo A., Ahmadian M.T.: Molecular dynamics simulation of pull-in phenomena in carbon nanotubes with Stone-Wales defects. Solid State Commun. 157, 38–44 (2013)

    Article  Google Scholar 

  4. Fakhrabadi M.M.S., Samadzadeh M., Rastgoo A., Yazdi M.H., Mashhadi M.M.: Vibrational analysis of carbon nanotubes using molecular mechanics and artificial neural network. Phys. E Low-dimens. Syst. Nanostruct. 44, 565–578 (2011)

    Article  Google Scholar 

  5. Kordrostami Z., Sheikhi M.H., Zarifkar A.: Cutoff frequency and switching delay of underlap carbon nanotube FETs. Fuller. Nanotub. Carbon Nanostruct. 21, 681–694 (2013)

    Article  Google Scholar 

  6. Zaman H.U., Hun P.D., Khan R.A., Yoon K.B.: Effect of multi-walled carbon nanotubes on morphology, mechanical and thermal properties of poly ethylene terephthalate nanocomposites. Fuller. Nanotub. Carbon Nanostruct. 21, 701–711 (2013)

    Article  Google Scholar 

  7. Dequesnes M., Rotkin S.V., Aluru N.R.: Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13, 120–131 (2002)

    Article  Google Scholar 

  8. Ke C., Espinosa H.D.: Numerical analysis of nanotube-based NEMS devices—Part I: Electrostatic charge distribution on multiwalled nanotubes. J. Appl. Mech. 72, 721–725 (2005)

    Article  MATH  Google Scholar 

  9. Ke C., Espinosa H.D., Pugno N.: Numerical analysis of nanotube based NEMS devices—Part II: Role of finite kinematics, stretching and charge concentrations. J. Appl. Mech. 72, 726–731 (2005)

    Article  MATH  Google Scholar 

  10. Ouakad H.M., Younis M.I.: Nonlinear dynamics of electrically actuated carbon nanotube resonators. J. Comput. Nonlinear Dyn. 5, 011009 (2010)

    Article  Google Scholar 

  11. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  12. Koiter W.T.: Couple stresses in the theory of elasticity, I and II. Proc. Ser. B. Nederl. Akad. Wetensch 67, 17–29 (1964)

    MATH  Google Scholar 

  13. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mindlin R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  15. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  16. Güven U.: The investigation of the nonlocal longitudinal stress waves with modified couple stress theory. Acta Mech. 221, 321–325 (2011)

    Article  MATH  Google Scholar 

  17. Gao, X.L., Huang, J.X., Reddy, J.N.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. doi:10.1007/s00707-013-0880-8

  18. Rezazadeh G., Vahdat A.S., Tayefeh-Rezaei S., Cetinkaya C.: Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech. 223, 1137–1152 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ma H.M., Gao X.L., Reddy J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  20. Park S.K., Gao X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  21. Asghari M.: Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. Int. J. Eng. Sci. 51, 292–309 (2012)

    Article  MathSciNet  Google Scholar 

  22. Simsek M., Reddy J.N.: A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Compos. Struct. 101, 47–58 (2013)

    Article  Google Scholar 

  23. Roque C.M.C., Fidalgo D.S., Ferreira A.J.M., Reddy J.N.: A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method. Compos. Struct. 96, 532–537 (2012)

    Article  Google Scholar 

  24. Roque C.M.C., Ferreira A.J.M., Reddy J.N.: Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Appl. Math. Model. 37, 4626–4633 (2013)

    Article  MathSciNet  Google Scholar 

  25. Ma H.M., Gao X.L., Reddy J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ke L.L., Wang Y.S.: Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory. Phys. E Low-dimens. Syst. Nanostruct. 43, 1031–1039 (2011)

    Article  Google Scholar 

  27. Rahaeifard M., Kahrobaiyan M.H., Ahmadian M.T., Firoozbakhsh K.: Size-dependent pull-in phenomena in nonlinear microbridges. Int. J. Mech. Sci. 54, 306–310 (2012)

    Article  Google Scholar 

  28. Rahaeifard M., Kahrobaiyan M.H., Asghari M., Ahmadian M.T.: Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sens. Actuators A Phys. 171, 370–374 (2011)

    Article  Google Scholar 

  29. Baghani M.: Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int. J. Eng. Sci. 54, 99–105 (2012)

    Article  MathSciNet  Google Scholar 

  30. Wang B., Zhou S., Zhao J., Chen X.: Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS. J. Micromech. Microeng. 21, 027001 (2011)

    Article  Google Scholar 

  31. Kong S.: Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory. Appl. Math. Model. 37, 7481–7488 (2013)

    Article  MathSciNet  Google Scholar 

  32. Ke L.L., Wang Y.S.: Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory. Phys. E Low-dimens. Syst. Nanostruct. 43, 1031–1039 (2011)

    Article  Google Scholar 

  33. Akgoz B., Civalek O.: Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater. Des. 42, 164–171 (2012)

    Article  Google Scholar 

  34. Noghrehabadi A., Eslami M., Ghalambaz M.: Influence of size effect and elastic boundary condition on the pull-in instability of nano-scale cantilever beams immersed in liquid electrolytes. Int. J. Non-Linear Mech. 52, 73–84 (2013)

    Article  Google Scholar 

  35. Zhou X., Wang L., Qin P.: Free vibration of micro-and nano-shells based on modified couple stress theory. J. Comput. Theor. Nanosci. 9, 814–818 (2012)

    Article  Google Scholar 

  36. Beni Y.T., Abadyan M.R., Noghrehabadi A.: Investigation of size effect on the pull-in instability of beam-type NEMS under van der Waals attraction. Procedia Eng. 10, 1718–1723 (2011)

    Article  Google Scholar 

  37. Abdi J., Koochi A., Kazemi A.S., Abadyan M.: Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory. Smart Mater. Struct. 20, 055011 (2011)

    Article  Google Scholar 

  38. Tadi Beni Y., Koochi A., Abadyan M.: Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS. Phys. E Low-dimens. Syst. Nanostruct. 43, 979–988 (2011)

    Article  Google Scholar 

  39. Ramezani A., Alasty A.: Combined action of Casimir and electrostatic forces on nanocantilever arrays. Acta Mech. 212, 305–317 (2010)

    Article  MATH  Google Scholar 

  40. Wang C., Guo W., Feng Q.: Deflection and stability of membrane structures under electrostatic and Casimir forces in microelectromechanical systems. Acta Mech. 180, 49–60 (2005)

    Article  MATH  Google Scholar 

  41. Jia X.L., Yang J., Kitipornchai S.: Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Acta Mech. 218, 161–174 (2011)

    Article  MATH  Google Scholar 

  42. Sharafkhani N., Rezazadeh G., Shabani R.: Study of mechanical behavior of circular FGM micro-plates under nonlinear electrostatic and mechanical shock loadings. Acta Mech. 223, 579–591 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Nayfeh A.H., Younis M.I., Abdel-Rahman E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  44. Rezazadeh G., Tahmasebi A., Zubstov M.: Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage. Microsys. Technol. 12, 1163–1170 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Masoud Seyyed Fakhrabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fakhrabadi, M.M.S., Rastgoo, A., Ahmadian, M.T. et al. Dynamic analysis of carbon nanotubes under electrostatic actuation using modified couple stress theory. Acta Mech 225, 1523–1535 (2014). https://doi.org/10.1007/s00707-013-1013-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1013-0

Keywords

Navigation