Skip to main content

Advertisement

Log in

On the internal structure of weakly nonlinear bores in laminar high Reynolds number flow

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The paper deals with the internal structure of hydraulic jumps in near-critical single-layer flows which replaces the discontinuities predicted by hydraulic theory if viscous effects acting inside a thin laminar boundary layer are properly accounted for. In the limit of large Reynolds number this leads to a structure problem formed by the classical triple-deck equations supplemented with a novel nonlinear interaction relationship which allows for the passage through the critical state. Hydraulic jumps are shown to represent eigensolutions of the structure problem where this passage is achieved by the local thickening of the boundary layer which acts as a viscous hump. The effects of detuning and dispersion due to streamline curvature and surface tension on the internal structure of hydraulic jumps are studied in detail. In addition, the interaction of hydraulic jumps with surface mounted obstacles is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byatt-Smith J.G.B.: The effects of laminar viscosity on the solution of the undular bore. J. Fluid Mech. 48, 33–40 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bowles R.I., Smith F.T.: The standing hydraulic jump: theory, computations and comparisons with experiments. J. Fluid Mech. 242, 145–168 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bowles R.I.: Upstream influence and the form of standing hydraulic jumps in liquid-layer flows on favourable slopes. J. Fluid Mech. 284, 63–96 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brilliant, H.M., Adamson, T.C.: Shock wave boundary layer interactions in laminar transonic flow. AIAA paper, No. 73-239 (1973)

  5. Chester W.: Resonant oscillations of water waves I. Theory. Proc. Roy. Soc. A 306, 5–22 (1968)

    Article  Google Scholar 

  6. Craik A., Latham R., Fawkes M., Gribbon P.: The circular hydraulic jump. J. Fluid Mech. 112, 347–362 (1981)

    Article  Google Scholar 

  7. Dutykh D., Dias F.: Viscous potential free-surface in a fluid layer of finite depth. C.R. Acad. Sci. Paris, Ser. I 345, 113–118 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Gajjar J., Smith F.T.: On hypersonic self-induced separation, hydraulic jumps and boundary layers with algebraic growth. Mathematika 30, 77–93 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gittler P.H.: On similarity solutions occurring in the theory of interactive laminar boundary layers. J. Fluid Mech. 244, 131–147 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grimshaw R.H.J., Smyth N.F.: Resonant flow of a stratisfied fluid over topography. J. Fluid Mech. 169, 429–464 (1986)

    Article  MATH  Google Scholar 

  11. Higuera F.: The hydraulic jump in a viscous laminar flow. J. Fluid Mech. 274, 69–92 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Johnson R.S.: Shallow water waves on a viscous fluid – the undular bore. Phys. Fluids 15, 1693–1699 (1972)

    Article  MATH  Google Scholar 

  13. Johnson R.S.: A modern introduction to the mathematical theory of water waves. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  14. Kakutani T., Matsuuchi K.: Effect of viscosity on long gravity waves. J. Phys. Soc. Jpn. 39, 237–246 (1975)

    Article  MathSciNet  Google Scholar 

  15. Kluwick A.: Small amplitude finite-rate waves in fluids having positive and negative nonlinearity. In: Kluwick, A. (eds) Nonlinear Waves in Real Fluids. CISM Courses and Lectures No. 315, pp. 1–43. Springer, New York (1991)

    Google Scholar 

  16. Kluwick A.: Interacting laminar and turbulent boundary layers. In: Kluwick, A. (eds) Recent Advances in Boundary Layer Theory. CISM Courses and Lectures No. 390, pp. 231–330. Springer, New York (1998)

    Google Scholar 

  17. Kluwick A., Gittler Ph.: Transonic laminar interacting boundary layers in narrow channels. ZAMM 81, 473–474 (2001)

    MATH  Google Scholar 

  18. Lamb H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  19. Larras M.: Ressaut circulaire sur fond parfaitement lisse. C.R. Adac. Sci. Paris 225, 837–839 (1962)

    Google Scholar 

  20. Lighthill M.J.: On boundary layers and upstream influence II. Supersonic flows without separation. Proc. Roy. Soc. A 217, 478–504 (1953)

    Article  Google Scholar 

  21. Lighthill M.J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  22. Liu P.L., Orfila A.: Viscous effects on transient long-wave propagation. J. Fluid Mech. 520, 83–92 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu P.L., Park Y.S., Cowen E.A.: Boundary layer flow and bed shear stress under a solitary wave. J. Fluid Mech. 574, 449–463 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mei C.C., Liu P.L.: The damping of surface gravity waves in a bounded liquid. J. Fluid Mech. 59, 239–256 (1973)

    Article  MATH  Google Scholar 

  25. Miles J.W.: Korteweg-de Vries equation modified by viscosity. Phys. Fluids 19, 1063 (1976)

    Article  MATH  Google Scholar 

  26. Nakoryakov V.E., Pokusaev B.G., Troyan E.N.: Impingement of an axisymmetric liquid jet on a barrier. Int. J. Heat Mass Transfer 21, 1175–1184 (1978)

    Article  Google Scholar 

  27. Oldham K.B., Spanier J.: The fractional calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  28. Olson R.G., Turkdogan E.T.: Radial spread of a liquid stream on a horizontal plate. Nature 211, 813–816 (1966)

    Article  Google Scholar 

  29. Peregrine D.H.: Surface shear waves. J. Hydrol. Div. ASCE 100, 1215–1227 (1974)

    Google Scholar 

  30. Rayleigh L.: On the theory of long waves and bores. Proc. Roy. Soc. A 90, 324–328 (1914)

    Article  Google Scholar 

  31. Reyhner T.A., Flügge-Lotz I.: The interaction of a shock wave with a laminar boundary layer. Int. J. Nonlinear Mech. 3, 173–199 (1968)

    Article  MATH  Google Scholar 

  32. Ruban A.I.: Singular solution of boundary layer equations which can be extended continuously through the point of zero surface friction. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 6, 42–52 (1981)

    MathSciNet  Google Scholar 

  33. Smith F.T.: The laminar separation of an incompressible fluid streaming past a smooth surface. Proc. Roy. Soc. A 356, 433–463 (1977)

    Article  Google Scholar 

  34. Smith F.T.: On the high Reynolds number theory of laminar flows. IMA J. of Appl. Maths 28, 207–281 (1982)

    Article  MATH  Google Scholar 

  35. Smith F.T., Merkin J.H.: Triple-deck solutions for subsonic flow past humps, steps, concave or convex corners and wedged trailing edges. Comput. Fluids 10, 7–25 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  36. Stewartson K.: Multistructured boundary layers on flat plates and related bodies. Adv. Appl. Mech. 14, 145–239 (1974)

    Article  Google Scholar 

  37. Smyth N.F.: Modulation theory for resonant flow over topography. Proc. Roy. Soc. A 409, 79–97 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  38. Stewartson K., Williams P.G.: Self-induced separation. Proc. Roy. Soc. A 312, 181–206 (1969)

    Article  MATH  Google Scholar 

  39. Stewartson K., Smith F.T., Kaups K.: Marginal separation. Stud. Appl. Math. 67, 45–61 (1982)

    MATH  MathSciNet  Google Scholar 

  40. Sugimoto N.: Generalized Burgers equation and fractional calculus. In: Jeffrey, A. (eds) Nonlinear Waves Motion, pp. 162–179. Longman, New York (1989)

    Google Scholar 

  41. Watson E.J.: The radial spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 481–499 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  42. Whitham G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Kluwick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kluwick, A., Cox, E.A., Exner, A. et al. On the internal structure of weakly nonlinear bores in laminar high Reynolds number flow. Acta Mech 210, 135–157 (2010). https://doi.org/10.1007/s00707-009-0188-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0188-x

Keywords