Skip to main content
Log in

Two parallel penny-shaped or annular cracks in a functionally graded piezoelectric strip under electric loading

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the mixed-mode fracture problem of a functionally graded piezoelectric material strip with two penny-shaped or annular cracks is considered. It is assumed that the electroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under electric loading. The problem is formulated in terms of a system of singular integral equations, which are solved numerically. Numerical calculations are carried out, and the stress and electric displacement intensity factors are presented for various values of dimensionless parameters representing the crack size, the crack location, and the material nonhomogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu C.M., Kahn M., Moy W.: Piezoelectric ceramics with functionally gradients: A new application in material design. J. Am. Ceram. Soc. 79, 809–812 (1996)

    Google Scholar 

  2. Almajid A., Taya M., Hudnut S.: Analysis of out-of-plane displacement and stress field in a piezocomposite plate with functionally graded microstructure. Int. J. Solids Struct. 38, 3377–3391 (2001)

    Article  MATH  Google Scholar 

  3. Li C., Weng G.J.: Antiplane crack problem in functionally graded piezoelectric materials. Trans. ASME J. Appl. Mech. 69, 481–488 (2002)

    MATH  Google Scholar 

  4. Ueda S.: Crack in a functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading. Theor. Appl. Fract. Mech. 40, 225–236 (2003)

    Article  MathSciNet  Google Scholar 

  5. Chen J., Liu Z.X., Zou Z.Z.: Electromechanical impact of a crack in a functionally graded piezoelectric medium. Theor. Appl. Fract. Mech. 39, 47–60 (2003)

    Article  Google Scholar 

  6. Wang B.L.: A mode III crack in functionally graded piezoelectric materials. Mech. Res. Commun. 30, 151–159 (2003)

    Article  MATH  Google Scholar 

  7. Kwon S.M.: Electrical nonlinear anti-plane shear crack in a functionally graded piezoelectric strip. Int. J. Solids Struct. 40, 5649–5667 (2003)

    Article  MATH  Google Scholar 

  8. Kwon S.M.: Impact response of an anti-plane crack in an FGPM bonded to a homogeneous piezoelectric strip. Int. J. Fract. 123, 187–208 (2003)

    Article  Google Scholar 

  9. Wang B.L., Zhang X.H.: A mode III crack in functionally graded piezoelectric material strip. Trans. ASME J. Appl. Mech. 71, 327–333 (2004)

    MATH  Google Scholar 

  10. Ueda S.: Electromechanical response of a center crack in a functionally graded piezoelectric strip. Smart Mater. Struct. 14, 1133–1138 (2005)

    Article  Google Scholar 

  11. Ma L. et al.: Fracture analysis of a functionally graded piezoelectric strip. Compos. Struct. 69, 294–300 (2005)

    Article  Google Scholar 

  12. Ma L. et al.: Scattering of the harmonic anti-plane shear waves by a crack in functionally graded piezoelectric materials. Compos. Struct. 69, 436–441 (2005)

    Article  Google Scholar 

  13. Ueda S.: Impact response of a functionally graded piezoelectric plate with a vertical crack. Theor. Appl. Fract. Mech. 44, 329–342 (2005)

    Article  Google Scholar 

  14. Ou Y.L., Chue C.H.: Mode III eccentric crack in a functionally graded piezoelectric strip. Int. J. Solids Struct. 43, 6148–6164 (2006)

    Article  MATH  Google Scholar 

  15. Ueda S.: A finite crack in a semi-infinite strip of a grade piezoelectric material under electric loading. Eur. J. Mech. A/Solids 25, 250–259 (2006)

    Article  MATH  Google Scholar 

  16. Ueda S.: Transient response of a center crack in a functionally graded piezoelectric strip under electromechanical impact. Eng. Fract. Mech. 73, 1455–1471 (2006)

    Article  MathSciNet  Google Scholar 

  17. Ueda S.: Electromechanical impact of an impermeable parallel crack in a functionally graded piezoelectric strip. Eur. J. Mech A/Solids 26, 123–136 (2007)

    Article  MATH  Google Scholar 

  18. Ueda S., Ashida F.: Transient response of a functionally graded piezoelectric strip with a penny-shaped crack under electric time-dependent loading. Acta Mech. 194, 175–190 (2007)

    Article  MATH  Google Scholar 

  19. Ueda S.: Functionally graded piezoelectric strip with a penny-shaped crack under electromechanical loadings. Eur. J. Mech. A/Solids 27, 50–60 (2008)

    Article  MATH  Google Scholar 

  20. Ueda S.: Thermally induced fracture of a functionally graded piezoelectric layer. J. Therm. Stress. 27, 291–309 (2004)

    Article  Google Scholar 

  21. Ueda S.: Thermoelectroelastic response of a center crack in a symmetrical functionally graded piezoelectric strip. J. Therm. Stress. 30, 125–144 (2007)

    Article  Google Scholar 

  22. Ueda S.: Effects of crack surface conductance on intensity factors for a cracked functionally graded piezoelectric material under thermal load. J. Therm. Stress. 30, 731–752 (2007)

    Article  Google Scholar 

  23. Ueda S.: Thermal intensity factors for a parallel crack in a functionally graded piezoelectric strip. J. Therm. Stress. 30, 321–342 (2007)

    Article  Google Scholar 

  24. Ueda S.: A penny-shaped crack in a functionally graded piezoelectric strip under thermal loading. Eng. Fract. Mech. 74, 1255–1273 (2007)

    Article  Google Scholar 

  25. Ueda S.: Transient thermoelectroelastic response of a functionally graded piezoelectric strip with a penny-shaped crack. Eng. Fract. Mech. 75, 1204–1222 (2008)

    Article  Google Scholar 

  26. Ueda S., Kondo H.: Transient intensity factors for a parallel crack in a plate of a functionally graded piezoelectric material under thermal shock loading conditions. J. Therm. Stress. 31, 211–232 (2008)

    Article  Google Scholar 

  27. Ueda S., Nishimura N.: An annular crack in a functionally graded piezoelectric strip under thermoelectric loadings. J. Therm. Stress. 31, 1079–1098 (2008)

    Article  Google Scholar 

  28. Ueda S.: A cracked functionally graded piezoelectric material strip under transient thermal loading. Acta Mech. 199, 53–70 (2008)

    Article  MATH  Google Scholar 

  29. Chen Z.T., Worswich M.J.: Antiplane mechanical and inplane electric time-dependent load applied to two coplanar cracks in piezoelectric ceramic material. Theor. Appl. Fract. Mech. 33, 173–184 (2000)

    Article  Google Scholar 

  30. Ueda S., Tani Y.: Thermal stress intensity factors for two coplanar cracks in a piezoelectric strip. J. Therm. Stress. 31, 403–415 (2008)

    Article  Google Scholar 

  31. Ueda S., Ikawa K.: Thermoelectromechanical interaction between two parallel cracks in a piezoelectric strip. J. Therm. Stress. 31, 311–330 (2008)

    Article  Google Scholar 

  32. Ueda S., Ishii A.: Thermoelectromechanical response of a piezoelectric strip with two parallel cracks of different lengths. J. Therm. Stress. 31, 976–990 (2008)

    Article  Google Scholar 

  33. Wang B.L., Mai Y.W.: Impermeable crack and permeable crack assumptions, which one is more realistic?. Trans. ASME J. Appl. Mech. 71, 575–578 (2004)

    MATH  Google Scholar 

  34. Sneddon I.N., Lowengrub M.: Crack Problems in the Classical Theory of Elasticity. Wiley, New York (1969)

    MATH  Google Scholar 

  35. Erdogan F., Wu B.H.: The surface crack problem for a plate with functionally graded properties. Trans. ASME J. Appl. Mech. 64, 449–456 (1997)

    Article  MATH  Google Scholar 

  36. Erdogan, F., Gupta, G.D., Cook, T.S.: Methods of Analysis and Solution of Crack Problems (Edited by Sih, G.C.). Noordhoff, Leyden (1972)

  37. Delale F., Erdogan F.: On the mechanical modeling of the interfacial region in bonded half planes. Trans. ASME J. Appl. Mech. 55, 317–324 (1988)

    Article  Google Scholar 

  38. Zhong Z., Yu T.: Vibration of a simply supported functionally graded piezoelectric rectangular plate. Smart Mater. Struct. 15, 1404–1412 (2006)

    Article  Google Scholar 

  39. Ashida F., Tauchert T.R.: Transient response of a piezothermoelastic circular disk under axisymmetric heating. Acta Mech. 128, 1–14 (1998)

    Article  MATH  Google Scholar 

  40. Qin Q.H.: Fracture Mechanics of Piezoelectric Materials. WIT, Southampton (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sei Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, S., Iogawa, T. Two parallel penny-shaped or annular cracks in a functionally graded piezoelectric strip under electric loading. Acta Mech 210, 57–70 (2010). https://doi.org/10.1007/s00707-009-0184-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0184-1

Keywords

Navigation