Skip to main content
Log in

The role of air entrainment on the outcome of drop impact on a solid surface

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The characteristic conditions causing spreading or splashing after drop impact on solid surfaces are considered together with the underlying mechanisms. To this end, the results of the various studies published over the past few years that have addressed the issue of splashing after droplet impact, specifically in terms of the definition of a splashing threshold, are critically compared and synthesized. The discussion aims at clarifying some of the conflicting findings. Information drawn from these considerations is used to distinguish between various splashing thresholds and it is shown that there exists a distinct difference between splashing on smooth and on rough surfaces, both in terms of the splashing thresholds and in terms of the mechanisms. Finally, a physical mechanism akin to air entrainment in dynamic wetting is proposed that may be of primary importance for the inception of splashing as well as fingering on smooth surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armster S.Q., Delplanque J.-P., Rein M., Lavernia E.J.: Thermo-fluid mechanisms controlling droplet based materials processes. Int. Mater. Rev. 47, 265–301 (2002)

    Google Scholar 

  2. Berg T.D., Clarke A., Ruschak K.J.: Hydrodynamic assist of dynamic wetting. AIChE J. 40, 229–242 (1994)

    Article  Google Scholar 

  3. Blake T.D., Ruschak K.J.: A maximum speed of wetting. Nature 282, 489–491 (1979)

    Article  Google Scholar 

  4. Clarke A.: Coating on a rough surface. AIChE J. 48, 2149–2156 (2002)

    Article  Google Scholar 

  5. Cohu O., Benkreira H.: Air entrainment in angled dip coating. Chem. Eng. Sci. 53, 533–540 (1998)

    Article  Google Scholar 

  6. Cossali G.E., Coghe A., Marengo M.: The impact of a single drop on a wetted surface. Exp. Fluids 22, 463–472 (1997)

    Article  Google Scholar 

  7. Hardalupas Y., Taylor A.M.K.P., Wilkins J.H.: Experimental investigation of sub-millimetre droplet impingement onto spherical surfaces. Int. J. Heat Fluid Flow 20, 477–485 (1999)

    Article  Google Scholar 

  8. Kistler S.F.: Hydrodynamics of wetting. In: Berg, J.C. (eds) Wettability, pp. 311–349. Marcel Dekker, New York (1993)

    Google Scholar 

  9. Levin Z., Hobbs P.V.: Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Phil. Trans. R. Soc. Lond. A 269, 555–585 (1971)

    Article  Google Scholar 

  10. Lindner-Silvester T., Schneider W.: The moving contact line with weak viscosity effects—an application and evaluation of Shikhmurzaev’s model. Acta Mech. 176, 245–258 (2005)

    Article  Google Scholar 

  11. Loehr, K.F.: Etalement et eclatement de gouttes. Ph.D. Thesis, Université Pierre et Marie Curie, Paris (1990)

  12. Mundo Chr., Sommerfeld M., Tropea C.: Droplet-wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiphase Flow 21, 151–173 (1995)

    Article  MATH  Google Scholar 

  13. Range K., Feuillebois F.: Influence of surface roughness on liquid drop impact. J. Colloid Interface Sci. 203, 16–30 (1998)

    Article  Google Scholar 

  14. Rein M.: Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 61–93 (1993)

    Article  Google Scholar 

  15. Rioboo R., Tropea C., Marengo M.: Outcomes from a drop impact on solid surfaces. Atomization Sprays 11, 155–165 (2001)

    Google Scholar 

  16. Rioboo R., Marengo M., Tropea C.: Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33, 112–124 (2002)

    Google Scholar 

  17. Roisman I.V., Horvat K., Tropea C.: Spray impact: rim transverse instability initiating fingering and splash, and description of a secondary spray. Phys. Fluids 18(102104), 1–19 (2006)

    MathSciNet  Google Scholar 

  18. Schmidt P., Knauss G.: Prallzerstäubung von Flüssigkeiten bei Nichtbenetzung. Chem. Ing. Tech. 48, 659 (1976)

    Article  Google Scholar 

  19. Shikhmurzaev Y.D.: The moving contact line on a smooth solid surface. Int. J. Multiphase Flow 19, 589–610 (1993)

    Article  MATH  Google Scholar 

  20. Stow C.D., Hadfield M.G.: An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. Lond. A 373, 419–441 (1981)

    Article  Google Scholar 

  21. Thoroddsen S.T., Sakakibara J.: Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10, 1359–1374 (1998)

    Article  Google Scholar 

  22. Vander Wal R.L., Berger B.M., Mozes S.D.: The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them. Exp. Fluids 40, 53–59 (2006)

    Article  Google Scholar 

  23. Vander Wal R.L., Berger B.M., Mozes S.D.: The splash/non-splash boundary upon a dry surface and thin fluid film. Exp. Fluids 40, 23–32 (2006b)

    Article  Google Scholar 

  24. Walzel P.: Zerteilgrenze beim Tropfenaufprall. Chem. Ing. Tech. 52, 338–339 (1980)

    Article  Google Scholar 

  25. Weiss D.A., Yarin A.L.: Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment and crown formation. J. Fluid Mech. 385, 229–254 (1999)

    Article  MATH  Google Scholar 

  26. Wilson S.D.R.: The slow dripping of a viscous fluid. J. Fluid Mech. 190, 561–570 (1988)

    Article  MATH  Google Scholar 

  27. Worthington A.M.: On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25, 261–272 (1876)

    Article  Google Scholar 

  28. Worthington A.M.: A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25, 498–503 (1876)

    Article  Google Scholar 

  29. Xu L., Zhang W.W., Nagel S.R.: Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94(184505), 1–4 (2005)

    Google Scholar 

  30. Xu L.: drop splashing on smooth, rough and textured surfaces. Phys. Rev. E 75(056316), 1–8 (2007)

    Google Scholar 

  31. Xu L., Barcos L., Nagel S.R.: Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76(066311), 1–5 (2007)

    MATH  Google Scholar 

  32. Yarin A.L.: Drop impact dynamics: splashing, spreading, receding, bouncing, .... Annu. Rev. Fluid Mech. 38, 159–192 (2006)

    Article  MathSciNet  Google Scholar 

  33. Yarin A.L., Weiss D.A.: Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141–173 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rein.

Additional information

Dedicated to Professor Wilhelm Schneider on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rein, M., Delplanque, JP. The role of air entrainment on the outcome of drop impact on a solid surface. Acta Mech 201, 105–118 (2008). https://doi.org/10.1007/s00707-008-0076-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0076-9

Keywords

Navigation