Skip to main content
Log in

Electrochemical monitoring of metal ions removal in Fe0/H2O systems: competitive effects of cations Zn2+, Pb2+, and Cd2+

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Metallic iron (Fe0) is a reactive material that is widely used for industrial water treatment. The course of the metal ion removal process using Fe0 (iron powder) was monitored electrochemically (differential pulse polarography). As probe species, Zn2+, Pb2+, and Cd2+ were selected for their different (1) adsorptive affinity to iron corrosion products (FeCPs), (2) redox properties, (3) precipitation ability at various pH. Batch experiments were carried out with binary (Zn2+/ Pb2+ and Zn2+/ Cd2+) and ternary (Zn2+/Cd2+/Pb2+) systems to reveal the mutual interference of these cations. Detailed time monitoring of iron aging for up to 14 days as well as concentration decay of individual removed cations represent important data for mechanistic discussions. The aqueous concentration of Fe2+ was also monitored. FeCPs were characterized using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Results showed that the presence of Pb2+ delays the Zn2+ removal whereas the presence of Cd2+ in solution accelerates its removal. The removal of Pb2+ by FeCPs was not affected by the presence of Zn2+ and Cd2+, moreover, the Pb2+ inhibited the effect of Cd2+ on the removal of Zn2+. XPS has proven existence of Fe2O3 and hydrated Fe oxidic phase, whilst the SEM showed that the original Fe grains were partly dissolved into buffered ambient under formation of fine particles of FeCPs. Results confirm that reductive transformation of any contaminant in a Fe0/H2O system is the consequence and not the cause of iron corrosion.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gosar M (2004) Geoenviron 51:2097

    CAS  Google Scholar 

  2. Xiao R, Wang S, Li R, Wang JJ, Zhang Z (2017) Ecotox Environ Safe 141:17

    CAS  Google Scholar 

  3. Oldright GL, Keyes HE, Miller V, Sloan WA (1928) Precipitation of lead and copper from solution on sponge iron. Bulletin 281, Bureau of Mines, p 131

  4. Bojic AL, Bojic D, Andjelkovic T (2009) J Hazard Mater 168:813

    CAS  PubMed  Google Scholar 

  5. Vollprecht D, Plessl K, Neuhold S, Kittinger F, Öfner W, Müller P, Mischitz R, Sedlazeck KP (2020) Processes 8:279

    CAS  Google Scholar 

  6. Xiao M, Hu R, Cui X, Gwenzi W, Noubactep C (2020) Processes 8:409

    CAS  Google Scholar 

  7. O’Hannesin SF, Gillham RW (1998) Ground Water 36:164

    Google Scholar 

  8. Henderson AD, Demond AH (2011) Environ Eng 137:689

    CAS  Google Scholar 

  9. Kishimoto N, Iwano S, Narazaki Y (2011) Water Air Soil Pollut 221:183

    CAS  Google Scholar 

  10. Guan X, Sun Y, Qin H, Li J, Lo IMC, He D, Dong H (2015) Water Res 75:224

    CAS  PubMed  Google Scholar 

  11. Noubactep C (2015) Water Res 85:114

    CAS  PubMed  Google Scholar 

  12. Suponik T, Winiarski A, Szade J (2015) Water Air Soil Pollut 226:360

    PubMed  PubMed Central  Google Scholar 

  13. Statham TM, Mumford KA, Stark SC, Gore DB, Stevens GW (2015) Sep Sci Technol 50:2427

    CAS  Google Scholar 

  14. Vollprecht D, Krois LM, Sedlazeck KP, Müller P, Mischitz R, Olbrich T, Pomberger R (2018) J Clean Prod 208:1409

    Google Scholar 

  15. Devonshire E (1890) J Frankl Inst 129:449

    Google Scholar 

  16. Lauderdale RA, Emmons AH (1951) J Am Water Works Ass 43:327

    CAS  Google Scholar 

  17. Gatcha-Bandjun N, Noubactep C, Loura Mbenguela B (2014) Fresenius Environ Bull 23:2663

    CAS  Google Scholar 

  18. Gatcha-Bandjun N, Noubactep C, Loura Mbenguela B (2017) Environ Technol Innov 8:71

    Google Scholar 

  19. Touomo-Wouafo M, Donkeng-Dazie J, Btatkeu-K BD, Tchatchueng JB, Noubactep C, Ludvík J (2018) Chemosphere 209:617

    CAS  PubMed  Google Scholar 

  20. Nde-Tchoupé AI, Nanseu-Njiki CP, Hu R, Nassi A, Noubactep C, Licha T (2019) Chemosphere 219:855

    PubMed  Google Scholar 

  21. Phukan M, Noubactep C, Licha T (2015) Chem Eng J 259:481

    CAS  Google Scholar 

  22. Hildebrant B, Ndé-Tchoupé AI, Lufingo M, Licha T, Noubactep C (2020) Processes 8:265

    CAS  Google Scholar 

  23. Noubactep C (2007) Open Environ Sci 1:9

    CAS  Google Scholar 

  24. Noubactep C (2008) Environ Technol 29:909

    CAS  PubMed  Google Scholar 

  25. Ghauch A (2015) Freiberg Online Geosci 32:1

    Google Scholar 

  26. Gheju M (2018) Water 10:651

    Google Scholar 

  27. Hu R, Yang H, Tao R, Cui X, Xiao M, Konadu-Amoah B, Cao V, Lufingo M, Soppa-Sangue NP, Ndé-Tchoupé AI, Gatcha-Bandjun N, Sipowo-Tala VR, Gwenzi W, Noubactep C (2020) Water 12:641

    CAS  Google Scholar 

  28. Cantrell KJ, Kaplan DI, Wietsma TW (1995) J Hazard Mater 42:201

    CAS  Google Scholar 

  29. Qiu SR, Lai HF, Roberson MJ, Hunt ML, Amrhein C, Giancarlo LC, Flynn GW, Yarmoff JA (2000) Langmuir 16:2230

    CAS  Google Scholar 

  30. Scott TB, Popescu IC, Crane RA, Noubactep C (2011) J Hazard Mater 186:280

    CAS  PubMed  Google Scholar 

  31. Khorshidi N, Azadmehr AR (2017) Desalin Water Treat 58:106

    CAS  Google Scholar 

  32. Christophi CA, Axe L (2000) J Environ Eng 126:66

    CAS  Google Scholar 

  33. Forbes EA, Posner AM, Quirk JP (1976) J Soil Sci 27:154

    CAS  Google Scholar 

  34. Gadde RR, Laitmen HA (1974) Anal Chem 46:2022

    CAS  Google Scholar 

  35. Lavine BK, Auslander G, Ritter J (2001) Microchem J 70:69

    CAS  Google Scholar 

  36. Kinraide TB, Yermiyahu U (2007) J Inorg Biochem 101:1201

    CAS  PubMed  Google Scholar 

  37. Nesic S (2007) Corros Sci 49:4308

    CAS  Google Scholar 

  38. Lazzari L (2008) General aspects of corrosion. Encyclopedia of hydrocarbons, chapter 9.1, vol V. Istituto Enciclopedia Italiana, Rome

    Google Scholar 

  39. Boparai HK, Joseph M, O’Carroll DM (2013) Environ Sci Pollut Res 20:6210

    CAS  Google Scholar 

  40. Pawluk K, Fronczyk J (2015) Pol J Chem Technol 15:7

    Google Scholar 

  41. Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymond RH, Gale LH (1981) Surf Interface Anal 3:211

    CAS  Google Scholar 

  42. Xi Y, Mallavarapu M, Naidu R (2010) Mater Res Bull 45:1361

    CAS  Google Scholar 

  43. Li XQ, Zhang WX (2007) J Phys Chem C 111:6939

    CAS  Google Scholar 

  44. Noubactep C, Btatkeu-K BD, Tchatchueng JB (2011) Chem Eng J 178:78

    CAS  Google Scholar 

  45. Kwok RWM (1999) XPSPeak, Version 4.1. Hong Kong, Available online: https://www.phy.cuhk.edu.hk/surface/XPSPeak. Accessed on 21 Sept 2019

  46. Briggs D, Seah MP (1996) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley, New York

    Google Scholar 

  47. Schultz MF, Benjamin MM, Ferguson JF (1987) Environ Sci Technol 121:863

    Google Scholar 

  48. Benjamin MM (1981) J Coll Inter Sci 79:209

    CAS  Google Scholar 

  49. Kinniburgh DG, Jackson ML, Syer JK (1976) Soil Sci Soc Am J 40:796

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful namely to the institutional support of the J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, RVO 61388955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Ludvík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touomo-Wouafo, M., Donkeng-Dazie, J., Jirka, I. et al. Electrochemical monitoring of metal ions removal in Fe0/H2O systems: competitive effects of cations Zn2+, Pb2+, and Cd2+. Monatsh Chem 151, 1511–1523 (2020). https://doi.org/10.1007/s00706-020-02683-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02683-6

Keywords

Navigation