Skip to main content
Log in

Rechargeable lithium-ion system based on lithium-vanadium(III) phosphate and lithium titanate and the peculiarity of it functioning

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

We propose a new electrochemical system based on a negative electrode based on lithium pentatitanate, a positive electrode based on the lithium-vanadium(III) phosphate, 0.67 mol dm−3 lithium chlorate(VII) solution in a mixture of propylene carbonate and 1,2-dimethoxyethane as an electrolyte and consider the peculiarities of its functioning. The paper cites the arguments and experimental data disclosing the influence of the products of the secondary oxidation of 1,2-dimethoxyethane at the Li3V2(PO4)3-electrode on the functional behavior of the Li4Ti5O12-electrode as the main reason for the observed decrease in the characteristics of the battery prototypes and suggests the ways to solve this problem.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao B, Ran R, Liu M, Shao Z (2015) Mater Sci Eng, R 98:1

    Article  Google Scholar 

  2. Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) J Power Sources 258:19

    Article  CAS  Google Scholar 

  3. Liu C, Massé R, Nan X, Cao G (2016) Energy Storage Mater 4:15

    Article  Google Scholar 

  4. Ushakov AV, Churikov AV, Ivanishchev AV, Makhov SV, Gamayunova IM (2016) In: Navratil T, Fojta M, Schwarzova K (eds), XXXVI Moderni elektrochemicke metody (Proceedings of 36th International Conference on Modern Electrochemical Methods), Jetrichovice, Czech Republic, 23-27 may, 2016. Lenka Srsenova-Best Servis, Czech Republic

  5. Ivanishchev AV, Churikov AV, Ushakov AV (2014) Electrochim Acta 122:187

    Article  CAS  Google Scholar 

  6. Senna M, Fabián M, Kavan L, Zukalová M, Briančin J, Turianicová E, Bottke P, Wilkening M, Šepelák V (2016) J Solid State Electrochem 20:2673

    Article  CAS  Google Scholar 

  7. Zukalová M, Fabián M, Klusáčková M, Klementová M, Lásková BP, Danková Z, Senna M, Kavan L (2018) Electrochim Acta 265:480

    Article  CAS  Google Scholar 

  8. Doughty D, Roth EP (2012) Electrochem Soc Interface 21:37

    Article  CAS  Google Scholar 

  9. Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G (2011) Chem Mater 23:3495

    Article  CAS  Google Scholar 

  10. Kavan L (2014) J Solid State Electrochem 18:2297

    Article  CAS  Google Scholar 

  11. Opra DP, Gnedenkov SV, Sinebryukhov SL, Voit EI, Sokolov AA, Ustinov AY, Zheleznov VV (2018) Prog Nat Sci: Mater Int 28:542

    Article  CAS  Google Scholar 

  12. Gnedenkov SV, Sinebryukhov SL, Zheleznov VV, Opra DP, Voit EI, Modin EB, Sokolov AA, Ustinov AY, Sergienko VI (2018) R Soc Open Sci 5:171811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilkening M, Iwaniak W, Heine J, Epp V, Kleinert A, Behrens M, Nuspl G, Bensch W, Heitjans P (2007) Phys Chem Chem Phys 9:6199

    Article  CAS  PubMed  Google Scholar 

  14. Takami N, Hoshina K, Inagaki H (2011) J Electrochem Soc 158:A725

    Article  CAS  Google Scholar 

  15. Kamata M, Esaka T, Kodama N, Fujine S, Yoneda K, Kanda K (1996) J Electrochem Soc 143:1866

    Article  CAS  Google Scholar 

  16. Takai S, Kamata M, Fujine S, Yoneda K, Kanda K, Esaka T (1999) Solid State Ionics 123:165

    Article  CAS  Google Scholar 

  17. Fehr KT, Holzapfel M, Laumann A, Schmidbauer E (2010) Solid State Ionics 181:1111

    Article  CAS  Google Scholar 

  18. Leonidov IA, Leonidova ON, Perelyaeva LA, Samigullina RF, Kovyazina SA, Patrakeev MV (2003) Phys Solid State 45:2183

    Article  CAS  Google Scholar 

  19. Vijayakumar M, Kerisit S, Rosso KM, Burton SD, Sears JA, Yang Z, Graff GL, Liu J, Hu J (2011) J Power Sources 196:2211

    Article  CAS  Google Scholar 

  20. Ohzuku T, Ueda A, Yamamota N (1995) J Electrochem Soc 142:1431

    Article  CAS  Google Scholar 

  21. Wagemaker M, Simon D, Kelder E, Schoonman J, Ringpfeil C, Haake U, Lützenkirchen-Hecht D, Frahm R, Mulder F (2006) Adv Mater 18:3169

    Article  CAS  Google Scholar 

  22. Zhong Z, Ouyang C, Shi S, Lei M (2008) ChemPhysChem 9:2104

    Article  CAS  PubMed  Google Scholar 

  23. Jiang S, Zhao B, Chen Y, Cai R, Shao Z (2013) J Power Sources 238:356

    Article  CAS  Google Scholar 

  24. Han C, He YB, Liu M, Li B, Yang QH, Wong CP, Kang F (2017) J Mater Chem A 5:6368

    Article  CAS  Google Scholar 

  25. Sato M, Ohkawa H, Yoshida K, Saito M, Uematsu K, Toda K (2000) Solid State Ionics 135:137

    Article  CAS  Google Scholar 

  26. Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Adv Mater 14:1525

    Article  CAS  Google Scholar 

  27. Saïdi MY, Barker J, Huang H, Swoyer JL, Adamson G (2002) Electrochem Solid-State Lett 5:A149

    Article  CAS  Google Scholar 

  28. Wang L, Li X, Tang Z, Zhang X (2012) Electrochem Commun 22:73

    Article  CAS  Google Scholar 

  29. Yi TF, Shu J, Zhu YR, Zhou AN, Zhu RS (2009) Electrochem Commun 11:91

    Article  CAS  Google Scholar 

  30. Mao WF, Zhang NN, Tang ZY, Feng YQ, Ma CX (2014) J Alloys Compd 588:25

    Article  CAS  Google Scholar 

  31. Liu C, Wang S, Zhang C, Fu H, Nan X, Yang Y, Cao G (2016) Energy Storage Mater 5:93

    Article  CAS  Google Scholar 

  32. Saroha R, Panwar AK, Jain A, Singh J, Verma S (2017) Ionics 23:2631

    Article  CAS  Google Scholar 

  33. Yang CC, Hu HC, Lin SJ, Chien WC (2014) J Power Sources 258:424

    Article  CAS  Google Scholar 

  34. Kelly RJ (1996) Chem Health Saf 3:28

    CAS  Google Scholar 

  35. Denisov ET (1999) Kinet Catal 40:217

    CAS  Google Scholar 

  36. Ingold KU (1969) Acc Chem Res 2:1

    Article  CAS  Google Scholar 

  37. Carboni M, Marrani AG, Spezia R, Brutti S (2016) Chem Eur J 22:17188

    Article  CAS  PubMed  Google Scholar 

  38. Sergienko VS (2004) Crystallogr Rep 49:907

    Article  CAS  Google Scholar 

  39. Kholdeeva OA, Trubitsina TA, Maksimovskaya RI, Golovin AV, Neiwert WA, Kolesov BA, López X, Poblet JM (2004) Inorg Chem 43:2284

    Article  CAS  PubMed  Google Scholar 

  40. Wang GC, Sung HHY, Williams ID, Leung WH (2012) Inorg Chem 51:3640

    Article  CAS  PubMed  Google Scholar 

  41. Spanó E, Tabacchi G, Gamba A, Fois E (2006) J Phys Chem B 110:21651

    Article  CAS  PubMed  Google Scholar 

  42. Yudanov IV, Gisdakis P, Di Valentin C, Rösch N (1999) Eur J Inorg Chem 1999:2135

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ph.D. O.N. Yurasov for analysis by chromatography-mass spectrometry, to the Russian Science Foundation (Project no. 15-13-10006) and to the Russian Foundation for Basic Research (Project no. 18-53-45004) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arseni V. Ushakov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, A.V., Makhov, S.V., Gridina, N.A. et al. Rechargeable lithium-ion system based on lithium-vanadium(III) phosphate and lithium titanate and the peculiarity of it functioning. Monatsh Chem 150, 499–509 (2019). https://doi.org/10.1007/s00706-019-2374-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-2374-4

Keywords

Navigation