Skip to main content
Log in

Thermodynamic affinity in constrained free-energy systems

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Affinity is the generic measure of the deviation of a state from stable equilibrium. Affinity, as introduced by de Donder, is a thermodynamic state property defined in terms of p, T, and system composition during the course of a chemical change. When incorporating reaction kinetic constraints to minimization of Gibbs energy of a multiphase system, affinity can be followed in terms of the extents of the constrained reactions. This property then becomes calculated in terms of the constraint potentials received as additional Lagrange multipliers in the minimization routine. Thus, received affinities are consistent with the respective values calculated from the chemical potentials of the reactants and products of the constrained reactions and their limiting behaviour corresponds to that defined for both stationary and stable equilibrium states. The intermediate affinities can be used in the respective reaction rate calculations, or as input parameters, to define the local chemical equilibrium set by known reaction kinetic constraints. Thus, they become a useful concept in modelling reactive processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For example, West et al. list 51 reactions including (i) thermal decomposition, which initiates the radical reaction chain; (ii) radical abstraction of Cl and disproportionation; (iii) oxidation; and (iv) dimerization forming a Ti2O x Cl y species.

References

  1. Koukkari P, Pajarre R (2006) CALPHAD 30:18

    Article  CAS  Google Scholar 

  2. Koukkari P, Pajarre R (2011) Pure Appl Chem 83:1243

    CAS  Google Scholar 

  3. Kozeschnik E (2000) CALPHAD 24:245

    Article  CAS  Google Scholar 

  4. Pelton AD, Koukkari P, Pajarre R, Eriksson G (2014) J Chem Thermodyn 72:16

    Article  CAS  Google Scholar 

  5. Pajarre R, Koukkari P, Kangas P (2016) Chem Eng Sci 146:244

    Article  CAS  Google Scholar 

  6. Koukkari P (1993) Comput Chem Eng 17:1157

    Article  CAS  Google Scholar 

  7. Koukkari P, Laukkanen I, Liukkonen S (1997) Fluid Phase Equilib 136:345

    Article  CAS  Google Scholar 

  8. Keck JC, Gillespie D (1971) Combust Flame 17:237

    Article  CAS  Google Scholar 

  9. Keck JC (1990) Prog Energy Combust Sci 16:125

    Article  CAS  Google Scholar 

  10. Janbozorgi M, Ugarte S, Metghalchi H, Keck JC (2009) Combust Flame 156:1871

    Article  CAS  Google Scholar 

  11. Ren Z, Goldin GM, Hiremath V, Pope SB (2011) Combust Theory Model 15:827

    Article  CAS  Google Scholar 

  12. Elbahloul S, Rigopoulos S (2015) Combust Flame 162:2256

    Article  CAS  Google Scholar 

  13. De Donder T, Van Rysselberghe P (1936) Thermodynamic theory of affinity. Stanford University Press, Stanford

    Google Scholar 

  14. Hillert M (2007) Phase equilibria, phase diagrams and phase transformations: their thermodynamic basis, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Haase R (1990) Thermodynamics of irreversible processes. Dover, New York

    Google Scholar 

  16. Kondepudi D, Prigogine I (1998) Modern thermodynamics: from heat engines to dissipative structures. Wiley, Chichester

    Google Scholar 

  17. Kjelstrup S, Bedeaux D, Johannessen E, Gross J (2010) Non-equilibrium thermodynamics for engineers. World Scientific, Singapore

    Book  Google Scholar 

  18. Ross J, Garcia-Colin LS (1989) J Phys Chem 93:2091

    Article  CAS  Google Scholar 

  19. Haase R (1981) Z Phys Chem 128:225

    Article  CAS  Google Scholar 

  20. Vuddagiri SR, Hall KR, Eubank PT (2000) Ind Eng Chem Res 39:508

    Article  CAS  Google Scholar 

  21. Lems S, van der Kooi H, de Swaan Arons J (2003) Chem Eng Sci 58:2001

    Article  CAS  Google Scholar 

  22. Qian H, Beard D (2005) Biophys Chem 114:213

    Article  CAS  Google Scholar 

  23. Bordel S, Nielsen J (2010) Metab Eng 12:369

    Article  CAS  Google Scholar 

  24. Niven RK (2010) Philos Trans R Soc B 365:1323

    Article  Google Scholar 

  25. Ross J, Corlan AD, Müller SC (2012) J Phys Chem B 116:7858

    Article  CAS  Google Scholar 

  26. Smith WR, Missen RW (1991) Chemical reaction equilibrium analysis: theory and algorithms. Krieger Publishing Company, Malabar

    Google Scholar 

  27. Koukkari P (1995) A physico-chemical reactor calculation by successive stationary states. Dissertation, Helsinki University of Technology

  28. Koukkari P, Pajarre R, Blomberg PBA (2011) Pure Appl Chem 83:1063

    CAS  Google Scholar 

  29. Kangas P, Koukkari P, Brink A, Hupa M (2015) Chem Eng Technol 38:1173

    Article  CAS  Google Scholar 

  30. Kangas P, Vidal Vázquez F, Savolainen J, Pajarre R, Koukkari P (2017) Fuel 197:217

    Article  CAS  Google Scholar 

  31. Blomberg PBA, Koukkari P (2011) Comput Chem Eng 35:1238

    Article  CAS  Google Scholar 

  32. Cheluget EL, Missen RW, Smith WR (1987) J Phys Chem 91:2428

    Article  CAS  Google Scholar 

  33. Norval GW, Phillips MJ, Missen RW, Smith WR (1991) Can J Chem Eng 69:1184

    Article  Google Scholar 

  34. Koukkari P, Niemelä J (1997) Comput Chem Eng 21:245

    Article  CAS  Google Scholar 

  35. West RH, Celnik MS, Inderwildi OR, Kraft M, Beran G, Green W (2007) Ind Eng Chem Res 46:6147

    Article  CAS  Google Scholar 

  36. Koukkari P, Penttilä K, Keegel M (2000) Coupled thermodynamic and kinetic models for high-temperature processes. In: Proceedings of 10th International IUPAC Conference on High Temperature Materials Chemistry. Forscungszentrum Julich, p 253

  37. Coda Zabetta E, Hupa M (2008) Combust Flame 152:14

    Article  CAS  Google Scholar 

  38. Zeldovich J (1946) Acta Physicochim URSS 12:577

    Google Scholar 

  39. Koukkari P (2010) ChemSheet model for the direct carbonation of lime milk in an integrated PCC process. In: Paperitehdaspäivät. Savonlinna, p P5

  40. Meyer V, Pisch A, Penttilä K, Koukkari P (2016) Chem Eng Res Des 115:335

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Research Council at the Academy of Finland, project Closeloop (Grant Number 303543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pertti Koukkari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koukkari, P., Pajarre, R. & Kangas, P. Thermodynamic affinity in constrained free-energy systems. Monatsh Chem 149, 381–394 (2018). https://doi.org/10.1007/s00706-017-2095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2095-5

Keywords

Navigation