Skip to main content
Log in

2-Amino-1,3,5-triazine chemistry: hydrogen-bond networks, Takemoto thiourea catalyst analogs, and olfactory mapping of a sweet-smelling triazine

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The chemistry of 4,6-dialkyl-2-amino-1,3,5-triazines with bulky alkyl substituents was investigated and their use as building blocks for preparing chiral thiourea organocatalysts explored. Reaction of ammonia with 4,6-di-tert-butyl-2-chloro-1,3,5-triazine gave 4,6-di-tert-butyl-1,3,5-triazin-2-amine which formed extended hydrogen-bond networks in the solid state according to X-ray crystallography. Selected heterocyclic amines were converted to isothiocyanates, and the latter reacted with (S,S)-2-(dimethylamino)cyclohexylamine to give enantiopure 1-hetaryl-3-[2-(dimethylamino)cyclohexyl]thioureas, with hetaryl representing either 4,6-dimethyl-1,3-diazin-2-yl, 4,6-diisopropyl-1,3,5-triazin-2-yl, or 4,6-di-tert-butyl-1,3,5-triazin-2-yl groups. These compounds are structural analogs of Takemotos’s chiral thiourea organocatalysts (1-[3,5-bis(trifluoromethyl)phenyl]-3-[(1S,2S)-2-(dimethylamino)cyclohexyl]thiourea) with an aza-aryl instead of the 3,5-bis(trifluoromethyl)phenyl group. They feature a strong intramolecular N–H to N-1 hydrogen bond, as shown by X-ray crystallography of 1-(4,6-di-tert-butyl-1,3,5-triazin-2-yl)-3-[2-(dimethylamino)cyclohexyl]thiourea in the solid state and by 1H NMR spectroscopy of all derivatives in CDCl3 solution, which prevents them from acting as bifunctional organocatalyst. In the reaction of 4,6-di-tert-butyl-2-chloro-1,3,5-triazine with ammonia, 4,6-di-tert-butyl-2-ethoxy-1,3,5-triazine was identified as side-product displaying a mildly sweet, floral odor that is unusual for a 1,3,5-triazine. Analogs (>35) of 4,6-di-tert-butyl-2-ethoxy-1,3,5-triazine were prepared to define the important structural factors of the olfactophore.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The pK a value for NH2-ionization of 4 was derived from that of aniline by taking into account incremental substitution effects of the CF3-group [40], or by applying a relationship given in Ref. [41].

References

  1. Xu L, Liao G-L, Chen X, Zhao C-Y, Chao H, Ji L-N (2010) Inorg Chem Commun 13:1050

    Article  CAS  Google Scholar 

  2. Safin DA, Xu Y, Korobkov I, Bryce DL, Murugesu M (2013) Cryst Eng Comm 15:10419

    Article  CAS  Google Scholar 

  3. Lerner EI, Lippard SJ (1976) J Am Chem Soc 98:5397

    Article  CAS  Google Scholar 

  4. Fletcher IJ, Kaschig J, Metzger G, Reinehr D, Hayoz P (2001) Biphenyl-substituted triazines. US Patent 6,255,483 B1, Jul 3, 2001

  5. Fletcher IJ, Kaschig J, Metzger G, Reinehr D, Hayoz P (2001) Chem Abstr 135:77694

    Google Scholar 

  6. Ehlis T, Müller S, Hayoz P (2004) Symmetrical triazine derivatives. Patent WO 2004/085412 A2, Oct 7, 2004

  7. Ehlis T, Müller S, Hayoz P (2004) Chem Abstr 141:300991

    Google Scholar 

  8. Ishi-i T, Yaguma K, Thiemann T, Yashima M, Ueno K, Mataka S (2004) Chem Lett 33:1244

    Article  Google Scholar 

  9. Esteghamatian M, Hu N-X, Popovic ZD, Hor A-M, Ong BS (2001) Triazine derivatives and electroluminescent (EL) devices using them. US Patent 6,225,467, Mai 1, 2001

  10. Esteghamatian M, Hu N-X, Popovic ZD, Hor A-M, Ong BS (2001) Chem Abstr 134:333997

    Google Scholar 

  11. Vodak DT, Kim K, Iordanidis L, Rasmussen PG, Matzger AJ, Yaghi OM (2003) Chem Eur J 9:4197

    Article  CAS  Google Scholar 

  12. Tragl S, Gibson K, Meyer HJ (2004) Zeitschr Anorg Allg Chem 630:2373

    Article  CAS  Google Scholar 

  13. Fukushima Y, Nohara N, Hashida Y, Sekiguchi S, Matsui K (1971) Bull Chem Soc Japan 44:794

    Article  CAS  Google Scholar 

  14. Huthmacher K, Most D (2012) Cyanuric acid and cyanuric chloride. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

  15. Knüsli E (1977) The s-triazine herbicides. In: Plimmer JR (ed) Pesticide chemistry in the 20th Century, ACS Symposium Series, vol 37. American Chemical Society, Washington, pp 76–92

    Chapter  Google Scholar 

  16. LeBaron HM, McFarland JE, Burnside OC (2008) The triazine herbicides. Elsevier, Amsterdam

    Google Scholar 

  17. Kaminski ZJ, Paneth P, Rudzinski J (1998) J Org Chem 63:4248

    Article  CAS  Google Scholar 

  18. Rayle HL, Fellmeth L (1999) Org Process Res Dev 3:172

    Article  CAS  Google Scholar 

  19. Kangani CO, Day BW (2008) Org Lett 10:2645

    Article  CAS  Google Scholar 

  20. De Luca L, Giacomelli G, Porcheddu A (2001) Org Lett 3:1519

    Article  Google Scholar 

  21. Olah GA, Nojima M, Kerekes I (1973) Synthesis 487

  22. Groß S, Laabs S, Scherrmann A, Sudau A, Zhang N, Nubbemeyer U (2000) J Prakt Chem 342:711

    Article  Google Scholar 

  23. Zollinger H (1991) Color chemistry, 2nd edn. VCH, Weinheim

    Google Scholar 

  24. Hunger K (2003) Industrial dyes. Wiley-VCH, Weinheim

    Google Scholar 

  25. Hintermann L, Xiao L, Labonne A (2008) Angew Chem Int Ed 47:8246

    Article  CAS  Google Scholar 

  26. Thomas J, Van Rossom W, Van Hecke K, Van Meervelt L, Smet M, Dehaen W, Maes W (2013) Synthesis 45:734

    Article  CAS  Google Scholar 

  27. Braun M, Frank W, Ganter C (2011) J Organomet Chem 696:3580

    Article  CAS  Google Scholar 

  28. Crosby SH, Clarkson GJ, Rourke JP (2012) Organometallics 31:7256

    Article  CAS  Google Scholar 

  29. Hu F-C, Wang S-W, Planells M, Robertson N, Padhy H, Du B-S, Chi Y, Yang P-F, Lin H-W, Lee G-H, Chou P-T (2013) Chem Sus Chem 6:1366

    Article  CAS  Google Scholar 

  30. Nishiura C, Abe S, Hashimoto M, Nitta H (2011) New iridium complex and organic light-emitting element including the same. Patent WO2011/070992 A1, Jun 16, 2011

  31. Nishiura C, Abe S, Hashimoto M, Nitta H (2011) Chem Abstr 155:68065

    Google Scholar 

  32. Sonobe T, Oisaki K, Kanai M (2012) Chem Sci 3:3249

    Article  CAS  Google Scholar 

  33. Gege C, Steeneck C, Kinzel O, Kleymann G, Hoffmann T (2013) Carboxamide or sulfonamide substituted thiazoles and related derivatives as modulators for the orphan nuclear receptor RORγ. Patent WO 2013/178362 A1, Dec 5, 2013

  34. Gege C, Steeneck C, Kinzel O, Kleymann G, Hoffmann T (2013) Chem Abstr 160:45651

    Google Scholar 

  35. Schreiner PR (2003) Chem Soc Rev 32:289

    Article  CAS  Google Scholar 

  36. Miyabe H, Takemoto Y (2008) Bull Chem Soc Jpn 81:785

    Article  CAS  Google Scholar 

  37. Takemoto Y (2005) Org Biomol Chem 3:4299

    Article  CAS  Google Scholar 

  38. Berkessel A, Seelig B (2009) Synthesis 2113

  39. Okino T, Hoashi Y, Takemoto Y (2003) J Am Chem Soc 125:12672

    Article  CAS  Google Scholar 

  40. Harris MG, Stewart R (1977) Can J Chem 55:3800

    Article  CAS  Google Scholar 

  41. Stewart R, Dolman D (1967) Can J Chem 45:925

    Article  CAS  Google Scholar 

  42. Hirt RC, Schmitt RG, Strauss HL, Koren JG (1961) J Chem Eng Data 6:610

    Article  CAS  Google Scholar 

  43. Kaik M, Gawronski J (2003) Tetrahedron Asymmetry 14:1559

    Article  CAS  Google Scholar 

  44. Combes A, Combes C (1892) Bull Soc Chim Fr 7:791

    Google Scholar 

  45. Kabbe H-J, Eiter K, Möller F (1967) Liebigs Ann Chem 704:140

    Article  CAS  Google Scholar 

  46. Drobnica L, Kristian P, Augustin J (1977) The chemistry of the —NCS group, 1003. In: Patai S (ed) The chemistry of cyanates and their thio derivatives, vol 2. Wiley, Chichester

    Google Scholar 

  47. Ohkata K, Ohsugi M, Yamamoto K, Ohsawa M, Akiba K (1996) J Am Chem Soc 118:6355

    Article  CAS  Google Scholar 

  48. Schultz O-E, Gauri KK (1962) Arch Pharm 295:146

    Article  CAS  Google Scholar 

  49. Sasaki S, Mizuno M, Naemura K, Tobe Y (2000) J Org Chem 65:275

    Article  CAS  Google Scholar 

  50. Andreasch R (1906) Monatsh Chem 27:1221

    Article  Google Scholar 

  51. Kaluza L (1912) Monatsh Chem 33:363

    Article  CAS  Google Scholar 

  52. Hodgkins JE, Ettlinger MG (1956) J Org Chem 21:404

    Article  CAS  Google Scholar 

  53. Wong R, Dolman SJ (2007) J Org Chem 72:3969

    Article  CAS  Google Scholar 

  54. Ruiz-Carretero A, Ramírez JR, Sánchez-Migallón A, de la Hoz A (2014) Tetrahedron 70:1733

    Article  CAS  Google Scholar 

  55. Kaminsky W, Goldberg KI, West DX (2002) J Mol Struct 605:9

    Article  CAS  Google Scholar 

  56. West DX, Hermetet AK, Ackerman LJ, Valdés-Martínez J, Hernández-Ortega S (1999) Acta Cryst C55:811

    CAS  Google Scholar 

  57. Kreutzberger A, Loch M (1986) Arch Pharm 319:769

    Article  CAS  Google Scholar 

  58. Tárkányi G, Király P, Soós T, Varga S (2012) Chem Eur J 18:1918

    Article  Google Scholar 

  59. Hintermann L, Schmitz M (2008) Adv Synth Catal 350:1469

    Article  CAS  Google Scholar 

  60. Hintermann L, Schmitz M, Maltsev OV, Naumov P (2013) Synthesis 45:308

    Article  CAS  Google Scholar 

  61. Maga JA (1981) J Agric Food Chem 29:895

    Article  CAS  Google Scholar 

  62. The Good Scents Company Information System (1980–2015). http://www.thegoodscentscompany.com. Accessed 9 Mar 2009

  63. Bruker (2013) APEX suite of crystallographic software, APEX 2 Version 2013.4. Bruker AXS Inc., Madison, Wisconsin, USA

  64. Sheldrick GM (2014) SHELXL2014. University of Göttingen, Germany

    Google Scholar 

  65. Huebschle CB, Sheldrick GM, Dittrich B (2011) J Appl Cryst 44:1281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project received funding from the Deutsche Forschungsgemeinschaft (SPP 1179). We thank Dr. Marco Schmitz (RWTH Aachen, 2009) for performing catalysis tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Hintermann.

Additional information

Dedicated to Prof. Dr. Walter Weissensteiner on the occasion of his retirement.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Pöthig, A. & Hintermann, L. 2-Amino-1,3,5-triazine chemistry: hydrogen-bond networks, Takemoto thiourea catalyst analogs, and olfactory mapping of a sweet-smelling triazine. Monatsh Chem 146, 1529–1539 (2015). https://doi.org/10.1007/s00706-015-1515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1515-7

Keywords

Navigation