Skip to main content
Log in

DFT calculations of NMR properties for GaP nanotubes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Density functional theory calculations were performed to investigate representative models of (6,0) zigzag and (4,4) armchair gallium phosphide nanotubes (GaPNTs). Nuclear magnetic resonance properties including isotropic and anisotropic chemical shielding parameters (CSI and CSA) were calculated for 69Ga and 31P atoms of the optimized structures. The calculated CS parameters indicated that the P atoms detect slight changes of electronic environment in the GaPNT structures, but the changes for the Ga atoms are more significant. Moreover, armchair GaPNTs could be considered a more reactive material than the zigzag model for interactions with other atoms or molecules.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bovey FA (1988) Nuclear magnetic resonance spectroscopy. Academic, San Diego

    Google Scholar 

  2. Mirzaei M, Mirzaei M (2010) J Mol Struct (Theochem) 953:134

    Article  CAS  Google Scholar 

  3. Mirzaei M, Mirzaei M (2010) Monatsh Chem 141:491

    Article  CAS  Google Scholar 

  4. Zurek E (2004) Autschbach J 126:13079

    CAS  Google Scholar 

  5. Harris PJF (1999) Carbon nanotubes and related structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Loiseau A, Willaime F, Demoncy N, Schramcheko N, Hug G, Colliex C, Pascard H (1998) Carbon 36:743

    Article  CAS  Google Scholar 

  7. Li XM, Tian WQ, Huang XR, Sun CC, Jiang L (2009) J Mol Struct (Theochem) 901:103

    Article  CAS  Google Scholar 

  8. Nirmala V, Kolandaivel P (2007) J Mol Struct (Theochem) 817:137

    Article  CAS  Google Scholar 

  9. Mirzaei M, Seif A, Hadipour NL (2008) Chem Phys Lett 461:246

    Article  CAS  Google Scholar 

  10. Chen GX, Zhang JM, Wang DD, Xu KW (2010) J Mol Struct (Theochem) 956:77

    Article  CAS  Google Scholar 

  11. Qian Z, Hou S, Zhang J, Li R, Shen Z, Zhao X, Xue Z (2005) Physica E 30:81

    Article  CAS  Google Scholar 

  12. Mirzaei M (2010) Z Naturforsch A 65:844

    CAS  Google Scholar 

  13. Mirzaei M, Mirzaei M (2010) J Mol Struct (Theochem) 951:69

    Article  CAS  Google Scholar 

  14. Wu Q, Hu Z, Liu C, Wang X, Chen Y (2005) J Phys Chem B 109:197

    Google Scholar 

  15. Tang C, Bando Y, Liu Z, Golberg D (2003) Chem Phys Lett 376:676

    Article  CAS  Google Scholar 

  16. Seo HW, Bae SY, Park J, Kang M, Kim S (2003) Chem Phys Lett 378:420

    Article  CAS  Google Scholar 

  17. Cui DL, Pan JQ, Zhang ZC, Huang BB, Qin XY, Jiang MH, Gao SM (2000) Prog Cryst Grow Charact Mater 40:145

    Article  CAS  Google Scholar 

  18. Bodaghi A, Mirzaei M, Seif A, Giahi M (2008) Physica E 41:209

    Article  CAS  Google Scholar 

  19. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc., Pittsburgh

    Google Scholar 

  21. Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) Nano Lett 6:1581

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Mirzaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirzaei, M., Mirzaei, M. DFT calculations of NMR properties for GaP nanotubes. Monatsh Chem 142, 111–114 (2011). https://doi.org/10.1007/s00706-010-0433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0433-y

Keywords

Navigation