Skip to main content
Log in

Carbon–nitrogen nanorings and nanoribbons: a theoretical approach for altering the ground states of cyclacenes and polyacenes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Carbon–nitrogen nanorings with formulae (CN)2n and in the form of [n]pyrazine cyclacenes appear either as closed-shell singlets (SCS) for n = 5, 10, and 12, or open-shell singlets (SOS) for n = 6, 7, 9, and 11 at restricted and unrestricted broken spin-symmetry density functional theory (DFT). All of their corresponding acyclic isomers, which are called [n]pyrazine polyacenes or nanoribbons, appear as SCS for n = 5–12. As a result, nitrogen substitutions alter the electronic ground state of cyclacenes and polyacenes and appear to increase their viability, which invites further experimental and theoretical realization and exploration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kawase T, Kurata H (2006) Chem Rev 106:5250

    Article  CAS  Google Scholar 

  2. Choi HS, Kim K (1999) Angew Chem Int Ed 38:2256

    Article  CAS  Google Scholar 

  3. Kohnke FH, Slawin AMZ, Stoddart JF, Williams DJ (1987) Angew Chem Int Ed Engl 26:892

    Article  Google Scholar 

  4. Ashton PR, Isaacs NS, Kohnke FH, Slawin AMZ, Spencer CM, Stoddart JF, Williams DJ (1988) Angew Chem Int Ed Engl 27:966

    Article  Google Scholar 

  5. Ashton PR, Brown GR, Isaacs NS, Giuffrida D, Kohnke FH, Mathias JP, Slawin AMZ, Smith DR, Stoddart JF, Williams DJ (1992) J Am Chem Soc 114:6330

    Article  CAS  Google Scholar 

  6. Cory RM, McPhail CL (1996) Tetrahedron Lett 37:1987

    Article  CAS  Google Scholar 

  7. Cory RM, McPhail CL, Dikmans AJ, Vittal JJ (1996) Tetrahedron Lett 37:1983

    Article  CAS  Google Scholar 

  8. Godt A, Enkelmann V, Schlüter AD (1989) Angew Chem Int Ed 28:1680

    Article  Google Scholar 

  9. Deichmann M, Nather C, Herges R (2003) Org Lett 5:1269

    Article  CAS  Google Scholar 

  10. Scott LT (2003) Angew Chem Int Ed 42:4133 (and references therein)

    Google Scholar 

  11. Vögtle F (1983) Top Curr Chem 115:157

    Google Scholar 

  12. Türker L (1994) Polycyclic Aromatic Compd 4:191

    Article  Google Scholar 

  13. Houk KN, Lee PS, Nendel MJ (2001) Org Chem 66:5517

    Article  CAS  Google Scholar 

  14. Loh KP, Yang SW, Soon JM, Zhang H, Wu P (2003) J Phys Chem A 107:5555

    Article  CAS  Google Scholar 

  15. Tonmunphean S, Wijitkosoom A, Tantirungrotechai Y, Nuttavut N, Limtrakul J (2003) Bull Chem Soc Jpn 76:1537

    Article  CAS  Google Scholar 

  16. Andre JM, Champagne B, Perpete EA, Guillaume M (2001) Int J Quantum Chem 84:607

    Article  CAS  Google Scholar 

  17. Türker L, Gümüs S (2004) J Mol Struct (Theochem) 685:1

    Google Scholar 

  18. Kassaee MZ, Arefrad H, Ghambarian M (2008) Int J Quantum Chem 108:696

    Article  CAS  Google Scholar 

  19. Chen Z, Jiang D, Lu X, Bettinger HF, Dai S, Schleyer PvR, Houk KN (2007) Org Lett 9:5449

    Article  CAS  Google Scholar 

  20. Sadowsky D, McNeill K, Cramer CJ (2010) Faraday Discuss 145:1

    Article  Google Scholar 

  21. Esser B, Rskatov JA, Gleiter R (2007) Org Lett 9:4037

    Article  CAS  Google Scholar 

  22. Esser B, Rominger F, Gleiter R (2008) J Am Chem Soc 130:6716

    Article  CAS  Google Scholar 

  23. Kornmayer SC, Esser B, Gleiter R (2009) Org Lett 11:725

    Article  CAS  Google Scholar 

  24. Jiang DE, Dai S (2008) J Phys Chem A 112:332

    Article  CAS  Google Scholar 

  25. Clar E (1964) Polycyclic hydrocarbons, vols 1, 2. Academic, London

    Google Scholar 

  26. Geerts Y, Klärner G, Müllen K (1998) In: Müllen K, Wagner G (eds) Electronic materials: the oligomer approach. Wiley, Weinheim, p 48

  27. Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99

    Article  CAS  Google Scholar 

  28. Hegmann FA, Tykwinski RR, Lui KPH, Bullock JE, Anthony JE (2002) Phys Rev Lett 89:227403–1/4

    Google Scholar 

  29. Meng H, Bendikov M, Mitchell G, Helgeson R, Wudl F, Bao Z, Siegrist T, Kloc C, Chen C-H (2003) Adv Mater 15:1090

    Article  CAS  Google Scholar 

  30. Payne MM, Parkin SR, Anthony JE (2005) J Am Chem Soc 127:8028

    Article  CAS  Google Scholar 

  31. Chun D, Cheng Y, Wudl F (2008) Angew Chem Int Ed 47:8380

    Article  CAS  Google Scholar 

  32. Kaur I, Stein NN, Kopreski RP, Miller GP (2009) J Am Chem Soc 131:3424

    Article  CAS  Google Scholar 

  33. Kertesz M, Hoffmann R (1983) Solid State Commun 47:97

    Article  CAS  Google Scholar 

  34. Lowe JP, Kafafi SA, LaFemina JP (1986) J Phys Chem 90:6602

    Article  CAS  Google Scholar 

  35. Kivelson S, Chapman OL (1983) Phys Rev B 28:7236

    Article  CAS  Google Scholar 

  36. Wiberg K (1997) J Org Chem 62:5720

    Article  CAS  Google Scholar 

  37. Schleyer PvR, Manoharan M, Jiao H, Stahl F (2001) Org Lett 3:3643

    Article  CAS  Google Scholar 

  38. Raghu C, Pati YA, Ramasesha S (2002) Phys Rev B 65:155204/1–9

    Google Scholar 

  39. Angliker H, Rommel E, Wirz J (1982) Chem Phys Lett 87:208

    Article  CAS  Google Scholar 

  40. McMaster DR, Wirz J (2001) J Am Chem Soc 123:238

    Article  Google Scholar 

  41. Benikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:7416

    Article  Google Scholar 

  42. Hachman J, Dorando JJ, Avilés M, Chan GKL (2007) J Chem Phys 127:134309

    Article  Google Scholar 

  43. Qu Z, Zhang D, Liu C, Jiang Y (2009) J Phys Chem A 113:7909

    Article  CAS  Google Scholar 

  44. Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) J Phys Soc Jpn 65:1920

    Article  CAS  Google Scholar 

  45. Enoki T, Kobayashi Y (2005) J Mater Chem 15:3999

    Article  CAS  Google Scholar 

  46. Ezawa M (2006) Phys Rev B 73:045432

    Article  Google Scholar 

  47. Son Y-W, Cohen ML, Louie SG (2006) Nature 444:347

    Article  CAS  Google Scholar 

  48. Kim WY, Kim KS (2008) J Comput Chem 29:1073

    Article  CAS  Google Scholar 

  49. Kim WY, Kim KS (2008) Nature Nanotech 3:408

    Article  CAS  Google Scholar 

  50. Kim WY, Choi YC, Kim KS (2008) J Mater Chem 18:4510

    Article  CAS  Google Scholar 

  51. Jiang DE, Sumpter BG, Dai S (2007) J Chem Phys 126:134701

    Article  Google Scholar 

  52. Türker L, Gümüs S (2004) J Mol Struct 679:143 (Theochem)

    Google Scholar 

  53. Winkler M, Houk KN (2007) J Am Chem Soc 129:1805

    Article  CAS  Google Scholar 

  54. Tonzola CJ, Alam MM, Kaminsky W, Jenekhe SA (2003) J Am Chem Soc 125:13548

    Article  CAS  Google Scholar 

  55. Nishida J-I, Naraso MS, Fujiwara E, Tada H, Tomura M, Yamashita Y (2004) Org Lett 6:2007

    Article  CAS  Google Scholar 

  56. Miao S, Appleton AL, Berger N, Barlow S, Marder SR, Hardcastle KI, Bunz UHF (2009) Chem Eur J 15:4990

    Article  CAS  Google Scholar 

  57. Tang Q, Liu J, Chan HS, Miao Q (2009) Chem Eur J 15:3965

    Article  CAS  Google Scholar 

  58. Yu SS, Zheng WT, Wen QB, Jiang Q (2008) Carbon 46:537

    Article  CAS  Google Scholar 

  59. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  60. Koch W, Holthausen MC (2000) A chemists guide to density functional theory. Wiley, Weinheim

    Google Scholar 

  61. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  62. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785

    CAS  Google Scholar 

  63. Krishnan K, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  64. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG Jr, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Rev. A 7. Gaussian, Pittsburgh

    Google Scholar 

  65. Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 41:169

    Google Scholar 

  66. Glendening ED, Reed AE, Carpenter JE, Weinhold F (2010) NBO version 3.1

  67. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, NJRvE Hommes (1996) J Am Chem Soc 118:6317

    Article  CAS  Google Scholar 

  68. Schleyer PvR, Jiao H, Hommes NJRvE, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669

    Article  CAS  Google Scholar 

  69. Jiang DE, Sumpter BG, Dai S (2007) J Chem Phys 127:124703

    Article  Google Scholar 

  70. Du P, Hrovat DA, Borden WT, Lahti PM, Rossi AR, Berson JA (1986) J Am Chem Soc 108:5072

    Article  CAS  Google Scholar 

  71. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842

    Article  CAS  Google Scholar 

  72. Zhou Z, Zhao J, Gao X, Chen Z, Yan J, Schleyer PvR, Morinaga M (2005) Chem Mater 17:992

    Article  CAS  Google Scholar 

  73. Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) Nano Lett 6:1581

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Mr. M. Ghambarian from Tarbiat Modares University for his stimulating and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Kassaee.

Electronic supplementary material

Below is the link to the electronic supplementary material, which contains Cartesian coordinates, absolute energies, energy differences between different electronic states, bond lengths, spin contaminations, molecular orbital diagrams, frontier molecular orbital of [6]pyrazine cyclacene and [5]pyrazine polyacene, NICS values of pyrazine nanorings for all calculated compounds at the B3LYP/6-31G* level.

Supplementary material (DOC 1331 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassaee, M.Z., Aref Rad, H. & Soleimani Amiri, S. Carbon–nitrogen nanorings and nanoribbons: a theoretical approach for altering the ground states of cyclacenes and polyacenes. Monatsh Chem 141, 1313–1319 (2010). https://doi.org/10.1007/s00706-010-0398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0398-x

Keywords

Navigation