Skip to main content
Log in

Mining of the water hyssop (Bacopa monnieri) transcriptome reveals genome sequences of two putative novel rhabdoviruses and a solendovirus

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The genomes of three putative novel viruses, tentatively named "Bacopa monnieri virus 1" (BmV1), "Bacopa monnieri virus 2" (BmV2), and "Bacopa monnieri virus 3" (BmV3) were identified in the transcriptome dataset of a medicinally important herb – water hyssop (Bacopa monnieri (L.) Wettst.). The BmV1 and BmV2 genomes resemble those of plant rhabdoviruses. The 13.3-kb-long BmV1 genome contains eight antisense ORFs in the order 3′ l–N–P2’–P–P3–M–G–P6–L–t 5’, with P2’ ORF overlapping with P, while the 13.2-kb BmV2 genome contains six interspersed ORFs in the antisense orientation (3′ l–N–P–P3–M–G–L–t 5’). The 8-kb BmV3 genome possesses five overlapping ORFs, with ORFs 2 to 5 being similar to those of solendoviruses. Based on genome organization, sequence similarity, and phylogeny, BmV1, BmV2, and BmV3 can be regarded as new members of the genera Cytorhabdovirus, Betanucleorhabdovirus, and Solendovirus, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The viral genome sequences obtained in the current study are available in the TPA section of GenBank (NCBI) under the accession numbers BK014479-BK014481.

References

  1. Aguiar S, Borowski T (2013) Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res 16:313–326

    Article  Google Scholar 

  2. Bejerman N, Acevedo RM, De Breuil S et al (2020) Molecular characterization of a novel cytorhabdovirus with a unique genomic organization infecting yerba mate (Ilex paraguariensis) in Argentina. Arch Virol 165:1475–1479

    Article  CAS  Google Scholar 

  3. Bejerman N, Giolitti F, De Breuil S, Trucco V, Nome C, Lenardon S, Dietzgen RG (2015) Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses. Virology 483:275–283

    Article  CAS  Google Scholar 

  4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  5. Bushmanova E, Antipov D, Lapidus A, Prjibelski AD (2019) rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience 8:giz100.

  6. Cuellar WJ, De Souza J, Barrantes I, Fuentes S, Kreuze JF (2011) Distinct cavemoviruses interact synergistically with sweet potato chlorotic stunt virus (genus Crinivirus) in cultivated sweet potato. J Gen Virol 92:1233–1243

    Article  CAS  Google Scholar 

  7. Debat HJ, Bejerman N (2019) Novel bird’s-foot trefoil RNA viruses provide insights into a clade of legume-associated enamoviruses and rhabdoviruses. Arch Virol 164:1419–1426

    Article  CAS  Google Scholar 

  8. Dietzgen RG, Bejerman NE, Goodin MM, Higgins CM, Huot OB, Kondo H, Martin KM, Whitfield AE (2020) Diversity and epidemiology of plant rhabdoviruses. Virus Res. https://doi.org/10.1016/j.virusres.2020.197942

    Article  PubMed  Google Scholar 

  9. Dietzgen RG, Innes DJ, Bejerman N (2015) Complete genome sequence and intracellular protein localization of Datura yellow vein nucleorhabdovirus. Virus Res 205:7–11

    Article  CAS  Google Scholar 

  10. Dietzgen RG, Kondo H, Goodin MM, Kurath G, Vasilakis N (2017) The family Rhabdoviridae: mono-and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res 227:158–170

    Article  CAS  Google Scholar 

  11. Grabherr MG, Haas BJ, Yassour M et al (2011) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644

    Article  CAS  Google Scholar 

  12. Hohn T, Rothnie H (2013) Plant pararetroviruses: replication and expression. Curr Opin Virol 3:621–628

    Article  CAS  Google Scholar 

  13. Jeena GS, Fatima S, Tripathi P, Upadhyay S, Shukla RK (2017) Comparative transcriptome analysis of shoot and root tissue of Bacopa monnieri identifies potential genes related to triterpenoid saponin biosynthesis. BMC Genom 18:490

    Article  Google Scholar 

  14. Koloniuk I, Fránová J, Sarkisova T, Přibylová J (2018) Complete genome sequences of two divergent isolates of strawberry crinkle virus coinfecting a single strawberry plant. Arch Virol 163:2539–2542

    Article  CAS  Google Scholar 

  15. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  16. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357

    Article  CAS  Google Scholar 

  17. Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010) Tablet—next generation sequence assembly visualization. Bioinformatics 26:401–402

    Article  CAS  Google Scholar 

  18. Nibert ML, Manny AR, Debat HJ, Firth AE, Bertini L, Caruso C (2018) A barnavirus sequence mined from a transcriptome of the Antarctic pearlwort Colobanthus quitensis. Arch Virol 163:1921–1926

    Article  CAS  Google Scholar 

  19. Simmonds P, Adams MJ, Benkő M, Breitbart M, Brister JR, Carstens EB, Davison AJ, Delwart E, Gorbalenya AE, Harrach B, Hull R (2017) Consensus statement: virus taxonomy in the age of metagenomics. Nat Rev Microbiol 15:161–168

    Article  CAS  Google Scholar 

  20. Sukal AC, Kidanemariam DB, Dale JL, Harding RM, James AP (2018) Characterization of a novel member of the family Caulimoviridae infecting Dioscorea nummularia in the Pacific, which may represent a new genus of dsDNA plant viruses. PLoS One 13:e0203038

    Article  Google Scholar 

  21. Tripathi N, Chouhan DS, Saini N, Tiwari S (2012) Assessment of genetic variations among highly endangered medicinal plant Bacopa monnieri (L.) from Central India using RAPD and ISSR analysis. 3 Biotech 2:327–336.

  22. Walker PJ, Dietzgen RG, Joubert DA, Blasdell KR (2011) Rhabdovirus accessory genes. Virus Res 162:110–125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank ICAR for the Advanced Supercomputing Hub for Omics Knowledge in Agriculture (ASHOKA) facility available at ICAR-IASRI, New Delhi, India. The authors are grateful to the Head, Division of Plant Pathology, the Dean and the Director, ICAR-IARI, New Delhi, for their support. VKS is thankful to DST for an INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Baranwal.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Handling Editor: Elvira Fiallo-Olivé.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidharthan, V.K., Baranwal, V.K. Mining of the water hyssop (Bacopa monnieri) transcriptome reveals genome sequences of two putative novel rhabdoviruses and a solendovirus. Arch Virol 166, 1985–1990 (2021). https://doi.org/10.1007/s00705-021-05061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05061-7

Navigation