Skip to main content
Log in

Molecular and biological characterization of a putative new sobemovirus infecting Physalis peruviana

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Physalis peruviana is a perennial solanaceous plant that has recently been established as a commercial crop in Brazil. This work reports the near-complete genome sequence, particle morphology, and plant host responses to a putative new sobemovirus, named “physalis rugose mosaic virus”. The virus, characterized by isometric particles of ca. 30 nm in diameter, causes foliar symptoms of mosaic, malformation and blistering, accompanied by stunting. The near-complete genome sequence comprises 4175 nucleotides and contains five open reading frames that are similar to those of other sobemoviruses. In addition to P. peruviana, the new virus systemically infected Capsicum annuum, Nicotiana tabacum and Solanum lycopersicum by mechanical inoculation. Thus, this virus may cause disease in these crops in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Muniz J, Kretzschmar AA, Rufato L, Pelizza TR, Rufato AR, Macedo TA (2014) General aspects of Physalis cultivation. Cienc Rural 44:960–970

    Article  Google Scholar 

  2. Da Graça JV, Trench TN, Martin MM (1985) Tomato spotted wilt virus in comercial Cape gooseberry (Physalis peruviana) in Transkei. Plant Pathol 34:451–453

    Article  Google Scholar 

  3. Prakash O, Misra AK, Singh SJ, Srivastava KM (1988) Isolation, purification and electron microscopy of mosaic virus of cape gooseberry. Int J Trop Plant Dis 6:85–87

    Google Scholar 

  4. Thomas PE, Hassan S (2002) First report of twenty-two new hosts of Potato leafroll virus. Plant Dis 86:561

    Article  CAS  PubMed  Google Scholar 

  5. Salamon P, Palkovics L (2005) Occurrence of Colombian datura virus in Brugmansia hybrids, Physalis peruviana L. and Solanum muricatum Ait. in Hungary. Acta Virol 49:117–122

    CAS  PubMed  Google Scholar 

  6. Trenado HP, Fortress IM, Louro D, Navas-Castillo J (2007) Physalis ixocarpa and P. peruviana, new natural hosts of Tomato chlorosis virus. Eur J Plant Pathol 118:193–196

    Article  Google Scholar 

  7. Gámez-Jiménez C, Romero-Romero JL, Santos-Cervantes ME, Leyva-López NE, Méndez-Lozano J (2009) Tomatillo (Physalis ixocarpa) as a natural new host for Tomato yellow leaf curl virus in Sinaloa, Mexico. Plant Dis 93:545

    Article  PubMed  Google Scholar 

  8. Perea M, Rodriguez NC, Fischer G, Velasquez M, Micán YU (2010) In: Perea M, Matallana LPR, Tirado AP (eds.) Biotecnología aplicada al mejoramiento de los cultivos de frutas tropicales. Bogotá, Colombia. Facultad de Ciencias, Universidad Nacional de Colombia, pp 466–490

  9. Aguirre-Ráquira W, Borda D, Hoyos-Carvajal L (2014) Potyvirus affecting uchuva (Physalis peruviana L.) in Centro Agropecuario Marengo, Colombia. Agric Syst 5:897–905

    Google Scholar 

  10. Gutierrez PA, Alzate JF, Montoya MM (2015) Complete genome sequence of an isolate of Potato virus X (PVX) infecting Cape gooseberry (Physalis peruviana) in Colombia. Virus Genes 50:518–522

    Article  CAS  PubMed  Google Scholar 

  11. Kisten L, Moodley V, Gubba A (2016) First report of Potato virus Y (PVY) on Physalis peruviana in South Africa. Plant Dis 100:1511

    Article  Google Scholar 

  12. Eiras M, Costa IFD, Chaves ALR, Colariccio A (2012) First report of a Tospovirus in a commercial crops of cape gooseberry in Brazil. New Dis Rep 25:25

    Article  Google Scholar 

  13. Esquivel AF, Rezende JAM, Lima EFB, Kitajima EW, Diniz FO (2018) First report of Groundnut ring spot virus on Physalis peruviana in Brazil. Plant Dis 102:1468

    Article  Google Scholar 

  14. Kitajima EW, Nome CF (1999) Microscopia eletrónica en virologia vegeal. In: Do Campo D, Lenardon S (eds) Métodos para detectar patógenos sistémicos. IFFIVE/INTA, Córdoba, pp 59–87

    Google Scholar 

  15. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Pyshkin AV (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol Bioinform Res 19:455–477

    CAS  Google Scholar 

  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  18. Blawid R, Silva JMF, Nagata T (2017) Discovering and sequencing new plant viral genomes by next-generation sequencing: description of a practical pipeline. Ann Appl Biol 170:301–314

    Article  Google Scholar 

  19. Sõmera M, Sarmiento C, Truve E (2015) Overview on Sobemoviruses and a proposal for the creation of the family Sobemoviridae. Viruses 7:3076–3115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9:e108277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Truve E, Fargette D (2012) Genus Sobemovirus. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego, pp 1185–1189

    Google Scholar 

  22. Tamm T, Truve E (2000) Sobemoviruses. J Virol 74:6231–6241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mäkinen K, Mäkeläinen K, Arshava N, Tamm T, Merits A, Truve E, Saarma M (2000) Characterization of VPg and the polyprotein processing of Cocksfoot mottle virus (genus Sobemovirus). J Gen Virol 81:2783–2789

    Article  PubMed  Google Scholar 

  24. Arthur K, Dogra S, Randles JW (2010) Complete nucleotide sequence of Velvet tobacco mottle virus isolate K1. Arch Virol 155:1893–1896

    Article  CAS  PubMed  Google Scholar 

  25. Koonin EV (1991) The phylogeny of RNA-dependent RNA polymerases of positive strand RNA viruses. J Gen Virol 72:2197–2206

    Article  PubMed  Google Scholar 

  26. Ling R, Pate AE, Carr JP, Firth AE (2013) An essential fifth coding ORF in the sobemoviruses. Virology 446:397–408

    Article  CAS  PubMed  Google Scholar 

  27. Gordon K, Fütterer J, Hohn T (1992) Efficient initiation of translation at non-AUG triplets in plant cells. Plant J 2:809–813

    CAS  PubMed  Google Scholar 

  28. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292

    Article  CAS  PubMed  Google Scholar 

  29. Rojas MR, Gilbertson RL, Russel DR, Maxwell DP (1993) Use of degenerate primers in the polymerase chain reaction to detect whiteflytransmitted geminiviruses. Plant Dis 77:340–347

    Article  CAS  Google Scholar 

  30. Zheng L, Rodoni BC, Gibbs MJ, Gibbs AJ (2009) A novel pair of universal primers for the detection of potyviruses. Plant Pathol 59:211–220

    Article  CAS  Google Scholar 

  31. Eiras M, Resende RO, Missiaggia AA, Ávila AC (2001) RT-PCR and dot blot hybridization methods for a universal detection of tospoviruses. Fitopatol Bras 26:170–175

    Article  CAS  Google Scholar 

  32. Sõmera M, Truve E (2017) Complete nucleotide sequence of Solanum nodiflorum mottle virus. Arch Virol 162:1731–1736

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Fundação de Amparo a Pesquisa de Santa Catarina (FAPESC—PROC619/2017) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—437059/2018-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge Alberto Marques Rezende or Fabio Nascimento da Silva.

Ethics declarations

Conflict of interest

None of the authors have a conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Handling Editor: F. Murilo Zerbini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fariña, A.E., Gorayeb, E.S., Camelo-García, V.M. et al. Molecular and biological characterization of a putative new sobemovirus infecting Physalis peruviana. Arch Virol 164, 2805–2810 (2019). https://doi.org/10.1007/s00705-019-04374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04374-y

Navigation