Skip to main content

Advertisement

Log in

Biological characterization of wild-bird-origin avian avulavirus 1 and efficacy of currently applied vaccines against potential infection in commercial poultry

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Newcastle disease virus (NDV), the type member of the species Avian avulavirus 1 (formerly known as avian paramyxovirus serotype 1), causes a highly contagious and economically important disease in a myriad of avian species around the globe. While extensive vaccination programs have been implemented in ND-endemic countries, the disease is continuously spreading in commercial, backyard, and wild captive poultry. In order to investigate the evolution of the virus and assess the efficiency of the vaccine regimens that are currently being applied in commercial poultry, four wild-bird-origin NDV strains were characterized biologically, based on mean death time and intracerebral pathogenicity index, and genetically, based on the cleavage motif (112RRQKRF117) in the fusion (F) protein. Based on these features, all of the isolates were characterized as velogenic strains of NDV. Phylogenetic analysis based on the complete genome sequence revealed clustering of these isolates within class II, genotype VII. This class of NDV remains the predominant genotype in the Egyptian poultry industry, as well as in those of many Asian and African countries. To investigate the potential of these wild-bird-origin NDV isolates to cause infection in domesticated poultry and to assess the efficacy of currently available vaccines for protection of commercial poultry, an extensive animal challenge experiment was performed. Cumulative clinicopathological and immunological investigations of virus-challenged chickens indicate that these isolates can potentially be transmitted between chicken and cause systemic infections, and the currently applied vaccines are unable to prevent clinical disease and virus shedding. Taken together, the data represent a comprehensive evaluation of the ability of Egyptian wild-bird-origin NDV strains to cause infection in commercial poultry and highlights the need for a continuous and large-scale surveillance as well as revised vaccine approaches. These integrated and multifaceted strategies would be crucial in any efforts to control and eradicate the disease globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akhtar S, Muneer MA, Muhammad K, Tipu MY, Anees M, Rashid I, Raza-ur-Rehman Hussain I (2017) Molecular characterization and epitope mapping of fusion F and hemagglutinin HN genes of avian paramyxovirus serotype I from peacocks in Pakistan. Pak J Zool 49(2):755–759. https://doi.org/10.17582/journal.pjz/2017.49.2.sc9

    Article  Google Scholar 

  2. Aldous EW, Mynn JK, Banks J, Alexander DJ (2003) A molecular epidemiological study of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. Avian Pathol 32(3):239–256. https://doi.org/10.1080/030794503100009783

    Article  PubMed  CAS  Google Scholar 

  3. Alexander DJ (2003) Newcastle disease, other avian paramyxoviruses, and pneumovirus infections. In: Saif JM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE (eds) Diseases of poultry, vol 11. Ames, Iowa, pp 63–99

    Google Scholar 

  4. Alexander DJ (2013) Newcastle disease, other avian paramyxoviruses, and pneumovirus infections. In: Saif B, Glisson JR, Fadly LRM, Swayne D (eds) Diseases of poultry, vol 4. Iowa State University Press, Ames, pp 63–99

    Google Scholar 

  5. Alexander DJ, Senne DA (2008) Newcastle disease, other avian paramyxoviruses, and pneumovirus infections. In: Saif YM, Fadly AM, Glisson JR, McDougald LR, Nolan LK, Swayne DE (eds) Diseases of poultry, 12th edn. Iowa State University Press, Ames, pp 75–116

    Google Scholar 

  6. Amarasinghe GK, Báo Y, Basler CF, Bavari S, Beer M, Bejerman N, Blasdell KR, Bochnowski A, Briese T, Bukreyev A, Calisher CH, Chandran K, Collins PL, Dietzgen RG, Dolnik O, Dürrwald R, Dye JM, Easton AJ, Ebihara H, Fang Q, Formenty P, Fouchier RM, Ghedin E, Harding RM, Hewson R, Higgins CM, Hong J, Horie M, James AP, Jiāng D, Kobinger GP, Kondo H, Kurath G, Lamb RA, Lee B, Leroy EM, Li M, Maisner A, Mühlberger E, Netesov SV, Nowotny N, Patterson JL, Payne SL, Paweska JT, Pearson MN, Randall RE, Revill PA, Rima BK, Rota P, Rubbenstroth D, Schwemmle M, Smither SJ, Song Q, Stone DM, Takada A, Terregino C, Tesh RB, Tomonaga K, Tordo N, Towner JS, Vasilakis N, Volchkov VE, Wahl-Jensen V, Walker PJ, Wang B, Wang D, Wang F, Wang L, Werren JH, Whitfield AE, Yan Z, Ye G, Kuhn JH (2017) Taxonomy of the order Mononegavirales: update 2017. Arch Virol 162(8):2493–2504. https://doi.org/10.1007/s00705-017-3311-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cattoli G, Fusaro A, Monne I, Molia S, Le Menach A, Maregeya B, Nchare A, Bangana I, Maina AG, Koffi JN, Thiam H, Bezeid OE, Salviato A, Nisi R, Terregino C, Capua I (2010) Emergence of a new genetic lineage of Newcastle disease virus in West and Central Africa—implications for diagnosis and control. Vet Microbiol 142(3–4):168–176. https://doi.org/10.1016/j.vetmic.2009.09.063

    Article  PubMed  CAS  Google Scholar 

  8. Courtney SC, Susta L, Gomez D, Hines NL, Pedersen JC, Brown CC, Miller PJ, Afonso CL (2013) Highly divergent virulent isolates of Newcastle disease virus from the Dominican Republic are members of a new genotype that may have evolved unnoticed for over 2 decades. J Clin Microbiol 51(2):508–517. https://doi.org/10.1128/jcm.02393-12 (Epub 2012/11/28)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Czeglèdi A, Ujvári D, Somogyi E, Wehmann E, Werner O, Lomniczi B (2006) Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Res 20(1–2):36–48. https://doi.org/10.1016/j.virusres.2005.11.009

    Article  CAS  Google Scholar 

  10. de Leeuw OS, Koch G, Hartog L, Ravenshorst N, Peeters BP (2005) Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin–neuraminidase protein. J Gen Virol 86(6):1759–1769. https://doi.org/10.1099/vir.0.80822-0

    Article  PubMed  CAS  Google Scholar 

  11. Diel DG, da Silva LH, Liu H, Wang Z, Miller PJ, Afonso CL (2012) Genetic diversity of avian paramyxovirus type 1: proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infect Genet Evol 12(8):1770–1779. https://doi.org/10.1016/j.meegid.2012.07.012

    Article  PubMed  Google Scholar 

  12. Diel DG, Miller PJ, Wolf PC, Mickley RM, Musante AR, Emanueli DC, Shively KJ, Pedersen K, Afonso CL (2012) Characterization of Newcastle disease viruses isolated from cormorant and gull species in the United States in 2010. Avian Dis 56(1):128–133. https://doi.org/10.1637/9886-081111-reg.1

    Article  PubMed  Google Scholar 

  13. Dortmans JC, Koch G, Rottier PJ, Peeters BP (2011) Virulence of Newcastle disease virus: what is known so far? Vet Res 42:122. https://doi.org/10.1186/1297-9716-42-122

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  15. Hu S, Ma H, Wu Y, Liu W, Wang X, Liu Y, Liu X (2009) A vaccine candidate of attenuated genotype VII Newcastle disease virus generated by reverse genetics. Vaccine 27(6):904–910. https://doi.org/10.1016/j.vaccine.2008.11.091

    Article  PubMed  CAS  Google Scholar 

  16. Hu S, Wang T, Liu Y, Meng C, Wang X, Wu Y, Liu X (2010) Identification of a variable epitope on the Newcastle disease virus hemagglutinin- neuraminidase protein. Vet Microbiol 140(1–2):92–97. https://doi.org/10.1016/j.vetmic.2009.07.029

    Article  PubMed  CAS  Google Scholar 

  17. Hussein HA, Emara MM, Rohaim MA (2014) Molecular characterization of newcastle disease virus genotype VIID in avian influenza H5N1 infected broiler flock in Egypt. Int J Virol 10:46–54

    Article  CAS  Google Scholar 

  18. Kim LM, King DJ, Curry PE, Suarez DL, Swayne DE, Stallknecht DE, Slemons RD, Pedersen JC, Senne DA, Winker K, Afonso CL (2007) Phylogenetic diversity among low-virulence Newcastle disease viruses from waterfowl and shorebirds and comparison of genotype distributions to those of poultry-origin isolates. J Virol 81(22):12641–12653. https://doi.org/10.1128/jvi.00843-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kolakofsky D, Roux L, Garcin D, Ruigrok RW (2005) Paramyxovirus mRNA editing, the ‘rule of six’ and error catastrophe: a hypothesis. J Gen Virol 86(7):1869–1877. https://doi.org/10.1099/vir.0.80986-0

    Article  PubMed  CAS  Google Scholar 

  20. Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathog 6(7):e1001005. https://doi.org/10.1371/journal.ppat.1001005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mayo MA (2002) Virus taxonomy—Houston 2002. Arch Virol 147(1071–1076):2. https://doi.org/10.1007/s007050200036

    Article  Google Scholar 

  22. Miller PJ, Decanini EL, Afonso CL (2010) Newcastle disease: evolution of genotypes and the related diagnostic challenges. Infect Genet Evol 10(1):26–35. https://doi.org/10.1016/j.meegid.2009.09.012

    Article  PubMed  CAS  Google Scholar 

  23. Munir M, Cortey M, Abbas M, Qureshi ZU, Afzal F, Shabbir MZ, Khan MT, Ahmed S, Ahmad S, Baule C, Ståhl K, Zohari S, Berg M (2012) Biological characterization and phylogenetic analysis of a novel genetic group of Newcastle disease virus isolated from outbreaks in commercial poultry and from backyard poultry flocks in Pakistan. Infect Genet Evol 12:1010–1019. https://doi.org/10.1016/j.meegid.2012.02.015

    Article  PubMed  CAS  Google Scholar 

  24. Munir M, Linde AM, Zohari S, Stahl K, Baule C, Engstrom B, Renström LH, Berg M (2011) Whole genome sequencing and characterization of a virulent Newcastle disease virus isolated from an outbreak in Sweden. Virus Genes 43:261–271. https://doi.org/10.1007/s11262-011-0636-2

    Article  PubMed  CAS  Google Scholar 

  25. Nisa Q, Younus M, Rehman M, Maqbool A, Khan I, Umar S (2017) Pathological alterations during co-infection of newcastle disease virus with escherichia coli in broiler chicken. Pak J Zool 50(2):495–503. https://doi.org/10.17582/journal.pjz/2018.50.2.495.503

    Article  Google Scholar 

  26. OIE (2012) Newcastle disease (version adopted by the World Assembly of Delegates of the OIE in May 2012). OIE terrestrial manual.

  27. Orabi A, Hussein A, Saleh AA, Abu El-Magd M M, Munir M (2017) Evolutionary insights into the fusion protein of Newcastle disease virus isolated from vaccinated chickens in 2016 in Egypt. Arch Virol 162:3069–3079. https://doi.org/10.1007/s00705-017-3483-1

    Article  PubMed  CAS  Google Scholar 

  28. Radwan MM, Darwish SF, El-Sabagh IM, El-Sanousi AA, Shalaby MA (2013) Isolation and molecular characterization of Newcastle disease virus genotypes II and VII in Egypt between 2011 and 2012. Virus Genes 47(2):311–316. https://doi.org/10.1007/s11262-013-0950-y

    Article  PubMed  CAS  Google Scholar 

  29. Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hygiene 27:493–497

    Google Scholar 

  30. Römer-Oberdörfer A, Veits J, Werner O, Mettenleiter TC (2006) Enhancement of pathogenicity of Newcastle disease virus by alteration of specific amino acid residues in the surface glycoproteins F and HN. Avian Dis 50(2):259–263. https://doi.org/10.1637/7471-111505r.1

    Article  PubMed  Google Scholar 

  31. Samuel A, Nayak B, Paldurai A, Xiao S, Aplogan GL, Awoume KA, Webby RJ, Ducatez MF, Collins PL, Samal SK (2013) Phylogenetic and pathotypic characterization of Newcastle disease viruses circulating in west Africa and efficacy of a current vaccine. J Clin Microbiol 51:771–781. https://doi.org/10.1128/jcm.02750-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Senne DA, King DJ, Kapczynski DR (2004) Control of Newcastle disease by vaccination. Dev Biol (Basel) 119:165–170

    CAS  Google Scholar 

  33. Snoeck CJ, Ducatez MF, Owoade AA, Faleke OO, Alkali BR, Tahita MC, Tarnagda Z, Ouedraogo JB, Maikano I, Mbah PO, Kremer JR, Muller CP (2009) Newcastle disease virus in West Africa: new virulent strains identified in non-commercial farms. Arch Virol 154(1):47–54. https://doi.org/10.1007/s00705-008-0269-5

    Article  PubMed  CAS  Google Scholar 

  34. Snoeck CJ, Owoade AA, Couacy-Hymann E, Alkali BR, Okwen MP, Adeyanju AT, Komoyo GF, Nakouné E, Le Faou A, Muller CP (2013) High genetic diversity of Newcastle disease virus in poultry in West and Central Africa: cocirculation of genotype XIV and newly defined genotypes XVII and XVIII. J Clin Microbiol 51(7):2250–2260. https://doi.org/10.1128/jcm.00684-13

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Umali DV, Ito H, Suzuki T, Shirota K, Katoh H, Ito T (2013) Molecular epidemiology of Newcastle disease virus isolates from vaccinated commercial poultry farms in non-epidemic areas of Japan. Virol J 10:330. https://doi.org/10.1186/1743-422x-10-330

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang J, Liu H, Liu W, Zheng D, Zhao Y, Li Y, Wang Y, Ge S, Lv Y, Zuo Y, Yu S, Wang Z (2015) Genomic characterizations of six pigeon paramyxovirus type 1 viruses isolated from live bird markets in China during 2011 to 2013. PLoS One 10(4):e0124261. https://doi.org/10.1371/journal.pone.0124261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wise MG, Suarez DL, Seal BS, Pedersen JC, Senne DA, King DJ, Kapczynski DR, Spackman E (2004) Development of a real-time reverse-transcription PCR for detection of Newcastle disease virus RNA in clinical samples. J Clin Microbiol 42:329–338. https://doi.org/10.1128/jcm.42.1.329-338.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yang CY, Shieh HK, Lin YL, Chang PC (1999) Newcastle disease virus isolated from recent outbreaks in Taiwan phylogenetically related to viruses (Genotype VII) from recent outbreaks in Western Europe. Avian Dis 43:125–130. https://doi.org/10.2307/1592771

    Article  PubMed  CAS  Google Scholar 

  40. Yuan P, Paterson RG, Leser GP, Lamb RA, Theodore S, Jardetzky S (2012) Structure of the ulster strain Newcastle Disease Virus hemagglutinin neuraminidase reveals auto-inhibitory interactions associated with low virulence. PLoS Pathog 8(8):e1002855. https://doi.org/10.1371/journal.ppat.1002855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported via a PhD scholarship to Rania El Naggar from the Culture Affairs and Mission Sector, Ministry of Higher Education, Government of Egypt. We would also like to thank the British Council’s STDF Institutional Links programme between the UK and Egypt (Grant number 332228521) for providing additional financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Munir.

Ethics declarations

Conflict of interest

We declare that we have no significant competing financial, professional or personal interests that might have influenced the performance or presentation of the work described in this report.

Ethical approval

All animal studies and procedures were carried out in strict accordance with the guidance and regulations of animal welfare and health. As part of this process, the work approved by the Ethics Committee at the Faculty of Veterinary Medicine, University of Sadat City, Egypt, and The Pirbright Institute, UK.

Additional information

Handling Editor: Bert K. Rima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Naggar, R.F., Rohaim, M.A., Bazid, A.H. et al. Biological characterization of wild-bird-origin avian avulavirus 1 and efficacy of currently applied vaccines against potential infection in commercial poultry. Arch Virol 163, 2743–2755 (2018). https://doi.org/10.1007/s00705-018-3916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3916-5

Navigation