Skip to main content

Advertisement

Log in

Pharmacophoric characteristics of dengue virus NS2B/NS3pro inhibitors: a systematic review of the most promising compounds

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Dengue virus (DENV) infection can lead to a wide range of clinical manifestations, including fatal hemorrhagic complications. There is a need to find effective pharmacotherapies to treat this disease due to the lack of specific immunotherapies and antiviral drugs. That said, the DENV NS2B/NS3pro protease complex is essential in both the viral multiplication cycle and in disease pathogenesis, and is considered a promising target for new antiviral therapies. Here, we performed a systematic review to evaluate the pharmacophoric characteristics of promising compounds against NS2B/NS3pro reported in the past 10 years. Online searches in the PUBMED/MEDLINE and SCOPUS databases resulted in 165 articles. Eight studies, which evaluated 3,384,268 molecules exhibiting protease inhibition activity, were included in this review. These studies evaluated anti-dengue activity in vitro and the IC50 and EC50 values were provided. Most compounds exhibited non-competitive inhibition. Cytotoxicity was evaluated in BHK-21, Vero, and LLC-MK2 cells, and the CC50 values obtained ranged from < 1.0 to 780.5 µM. Several groups were associated with biological activity against dengue, including nitro, catechol, halogen and ammonium quaternaries. Thus, these groups seem to be potential pharmacophores that can be further investigated to treat dengue infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu D, Mao F, Ye Y et al (2015) Policresulen, a novel NS2B/NS3 protease inhibitor, effectively inhibits the replication of DENV2 virus in BHK-21 cells. Acta Pharmacol Sin 36:1126–1136. https://doi.org/10.1038/aps.2015.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guzman MG, Harris E (2015) Dengue. Lancet 385:453–465. https://doi.org/10.1016/S0140-6736(14)60572-9

    Article  PubMed  Google Scholar 

  3. Bhatt S, Gething PW, Brady OJ et al (2013) The global distribution and burden of dengue. Nature 496:504–507. https://doi.org/10.1038/nature12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iturbe-Ormaetxe I, Walker T, O’ Neill SL (2011) Wolbachia and the biological control of mosquito-borne disease. EMBO Rep 12:508–518. https://doi.org/10.1038/embor.2011.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martin J, Hermida L (2016) Dengue vaccine: an update on recombinant subunit strategies. Acta Virol 60:3–14. https://doi.org/10.4149/av_2016_01_3

    Article  CAS  PubMed  Google Scholar 

  6. Torresi J, Ebert G, Pellegrini M (2017) Vaccines licensed and in clinical trials for the prevention of dengue. Hum Vaccin Immunother. https://doi.org/10.1080/21645515.2016.1261770

    PubMed  PubMed Central  Google Scholar 

  7. McDowell M, Gonzales SR, Kumarapperuma SC et al (2010) A novel nucleoside analog, 1-beta-d-ribofuranosyl-3-ethynyl-[1, 2, 4]triazole (ETAR), exhibits efficacy against a broad range of flaviviruses in vitro. Antivir Res 87:78–80. https://doi.org/10.1016/j.antiviral.2010.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. World Health Organization (2012) Global strategy for dengue prevention and control 2012–2020. WHO, Geneva, pp 1–43

    Google Scholar 

  9. Flipse J, Smit JM (2015) The complexity of a dengue vaccine: a review of the human antibody response. PLoS Negl Trop Dis 9:e0003749. https://doi.org/10.1371/journal.pntd.0003749

    Article  PubMed  PubMed Central  Google Scholar 

  10. Natarajan S (2010) NS3 protease from flavivirus as a target for designing antiviral inhibitors against dengue virus. Genet Mol Biol 33:214–219. https://doi.org/10.1590/S1415-47572010000200002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang YM, Hayes EP, McCarty TC et al (1988) Immunization of mice with dengue structural proteins and nonstructural protein NS1 expressed by baculovirus recombinant induces resistance to dengue virus encephalitis. J Virol 62:3027–3031

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Clyde K, Kyle JL, Harris E (2006) Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 80:11418–11431. https://doi.org/10.1128/jvi.01257-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fauquet CM, Fargette D (2005) International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virol J 2:64. https://doi.org/10.1186/1743-422X-2-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu T, Sampath A, Chao A et al (2005) Structure of the dengue virus helicase/nucleoside triphosphatase catalytic domain at a resolution of 2.4 A. J Virol 79:10278–10288. https://doi.org/10.1128/JVI.79.16.10278-10288.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chambers TJ, Hahn CS, Galler R, Rice CM (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688. https://doi.org/10.1146/annurev.mi.44.100190.003245

    Article  CAS  PubMed  Google Scholar 

  16. Falgout B, Pethel M, Zhang YM, Lai CJ (1991) Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol 65:2467–2475

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stocks CE, Lobigs M (1998) Signal peptidase cleavage at the flavivirus C-prM junction: dependence on the viral NS2B-3 protease for efficient processing requires determinants in C, the signal peptide, and prM. J Virol 72:2141–2149

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lescar J, Luo D, Xu T et al (2008) Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from dengue virus as a target. Antivir Res 80:94–101. https://doi.org/10.1016/j.antiviral.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  19. Woestenenk E, Agback P, Unnerståle S et al (2017) Co-refolding of a functional complex of dengue NS3 protease and NS2B co-factor domain and backbone resonance assignment by solution NMR. Protein Expr Purif 140:16–27. https://doi.org/10.1016/j.pep.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  20. Aguilera-Pesantes D, Robayo LE, Méndez PE et al (2017) Discovering key residues of dengue virus NS2b-NS3-protease: new binding sites for antiviral inhibitors design. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2017.03.107

    Google Scholar 

  21. Aleshin AE, Shiryaev SA, Strongin AY, Liddington RC (2007) Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold. Protein Sci 16:795–806. https://doi.org/10.1110/ps.072753207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Erbel P, Schiering N, D’Arcy A et al (2006) Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13:372–373. https://doi.org/10.1038/nsmb1073

    Article  CAS  PubMed  Google Scholar 

  23. Shannon AE, Chappell KJ, Stoermer MJ et al (2016) Simultaneous uncoupled expression and purification of the dengue virus NS3 protease and NS2B co-factor domain. Protein Expr Purif 119:124–129. https://doi.org/10.1016/j.pep.2015.11.022

    Article  CAS  PubMed  Google Scholar 

  24. Godói IP, Lima WG, Junior MC, José R (2016) Docking and QM/MM studies of NS2B-NS3pro inhibitors: a molecular target against the dengue virus. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20160242

    Google Scholar 

  25. Lim SP, Noble CG, Shi P-Y et al (2015) The dengue virus NS5 protein as a target for drug discovery. Antivir Res 119:57–67. https://doi.org/10.1016/j.antiviral.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  26. El Sahili A, Lescar J (2017) Dengue virus non-structural protein 5. Viruses. https://doi.org/10.3390/v9040091

    PubMed  PubMed Central  Google Scholar 

  27. De Maio FA, Risso G, Iglesias NG et al (2016) The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLoS Pathog 12:e1005841. https://doi.org/10.1371/journal.ppat.1005841

    Article  PubMed  PubMed Central  Google Scholar 

  28. Midde NM, Patters BJ, Rao PSS et al (2016) Investigational protease inhibitors as antiretroviral therapies. Expert Opin Investig Drugs 25:1189–1200. https://doi.org/10.1080/13543784.2016.1212837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frecer V, Miertus S (2010) Design, structure-based focusing and in silico screening of combinatorial library of peptidomimetic inhibitors of dengue virus NS2B-NS3 protease. J Comput Aided Mol Des 24:195–212. https://doi.org/10.1007/s10822-010-9326-8

    Article  CAS  PubMed  Google Scholar 

  30. Takagi Y, Matsui K, Nobori H et al (2017) Discovery of novel cyclic peptide inhibitors of dengue virus NS2B-NS3 protease with antiviral activity. Bioorg Med Chem Lett 27:3586–3590. https://doi.org/10.1016/j.bmcl.2017.05.027

    Article  CAS  PubMed  Google Scholar 

  31. Rodpothong P, Auewarakul P (2012) Positive selection sites in the surface genes of dengue virus: phylogenetic analysis of the interserotypic branches of the four serotypes. Virus Genes 44:408–414. https://doi.org/10.1007/s11262-011-0709-2

    Article  CAS  PubMed  Google Scholar 

  32. Pambudi S, Kawashita N, Phanthanawiboon S et al (2013) A small compound targeting the interaction between nonstructural proteins 2B and 3 inhibits dengue virus replication. Biochem Biophys Res Commun 440:393–398. https://doi.org/10.1016/j.bbrc.2013.09.078

    Article  CAS  PubMed  Google Scholar 

  33. Tomlinson SM, Malmstrom RD, Watowich SJ (2009) New approaches to structure-based discovery of dengue protease inhibitors. Infect Disord Drug Targets 9:327–343. https://doi.org/10.2174/1871526510909030327

    Article  CAS  PubMed  Google Scholar 

  34. Yang C-C, Hsieh Y-C, Lee S-J et al (2011) Novel dengue virus-specific NS2B/NS3 protease inhibitor, BP2109, discovered by a high-throughput screening assay. Antimicrob Agents Chemother 55:229–238

    Article  CAS  PubMed  Google Scholar 

  35. Rothan HA, Bahrani H, Rahman NA, Yusof R (2014) Identification of natural antimicrobial agents to treat dengue infection: in vitro analysis of latarcin peptide activity against dengue virus. BMC Microbiol 14:140. https://doi.org/10.1186/1471-2180-14-140

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu H, Bock S, Snitko M et al (2015) Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob Agents Chemother 59:1100–1109. https://doi.org/10.1128/AAC.03543-14

    Article  PubMed  PubMed Central  Google Scholar 

  37. Balasubramanian A, Manzano M, Teramoto T et al (2016) High-throughput screening for the identification of small-molecule inhibitors of the flaviviral protease. Antivir Res 134:6–16. https://doi.org/10.1016/j.antiviral.2016.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang C-C, Hu H-S, Wu R-H et al (2014) A novel dengue virus inhibitor, BP13944, discovered by high-throughput screening with dengue virus replicon cells selects for resistance in the viral NS2B/NS3 protease. Antimicrob Agents Chemother 58:110–119. https://doi.org/10.1128/AAC.01281-13

    Article  PubMed  PubMed Central  Google Scholar 

  39. Muhamad M, Kee LY, Rahman NA, Yusof R (2010) Antiviral actions of flavanoid-derived compounds on dengue virus type-2. Int J Biol Sci 6:294–302. https://doi.org/10.7150/ijbs.6.294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Podvinec M, Lim SP, Schmidt T et al (2010) Novel inhibitors of dengue virus methyltransferase: discovery by in vitro-driven virtual screening on a desktop computer grid. J Med Chem 53:1483–1495. https://doi.org/10.1021/jm900776m

    Article  CAS  PubMed  Google Scholar 

  41. Altmann K-H, Gaugaz FZ, Schiess R (2011) Diversity through semisynthesis: the chemistry and biological activity of semisynthetic epothilone derivatives. Mol Divers 15:383–399. https://doi.org/10.1007/s11030-010-9291-0

    Article  CAS  PubMed  Google Scholar 

  42. Erwin ME, Varnam D, Jones RN (1997) In vitro antimicrobial activity of RU-59863, a C-7 catechol substituted cephalosporin. Diagn Microbiol Infect Dis 28:93–100. https://doi.org/10.1016/S0732-8893(97)00004-7

    Article  CAS  PubMed  Google Scholar 

  43. Maurin C, Bailly F, Mbemba G et al (2006) Design, synthesis, and anti-integrase activity of catechol-DKA hybrids. Bioorg Med Chem 14:2978–2984. https://doi.org/10.1016/j.bmc.2005.12.039

    Article  CAS  PubMed  Google Scholar 

  44. Hoegy F, Gwynn MN, Schalk IJ (2010) Susceptibility of Pseudomonas aeruginosa to catechol-substituted cephalosporin is unrelated to the pyochelin-Fe transporter FptA. Amino Acids 38:1627–1629. https://doi.org/10.1007/s00726-009-0353-5

    Article  CAS  PubMed  Google Scholar 

  45. Bozzini T, Botta G, Delfino M et al (2013) Tyrosinase and layer-by-layer supported tyrosinases in the synthesis of lipophilic catechols with antiinfluenza activity. Bioorg Med Chem 21:7699–7708. https://doi.org/10.1016/j.bmc.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  46. Corona A, Desantis J, Massari S et al (2016) Studies on cycloheptathiophene-3-carboxamide derivatives as allosteric HIV-1 ribonuclease H inhibitors. Chem Med Chem 11:1709–1720. https://doi.org/10.1002/cmdc.201600015

    Article  CAS  PubMed  Google Scholar 

  47. Ito A, Kohira N, Bouchillon SK et al (2016) In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J Antimicrob Chemother 71:670–677. https://doi.org/10.1093/jac/dkv402

    Article  CAS  PubMed  Google Scholar 

  48. Valle RPC, Falgout B (1998) Mutagenesis of the NS3 protease of dengue virus type 2. J Virol 72:624–632

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar D, Judge V, Narang R et al (2010) Benzylidene/2-chlorobenzylidene hydrazides: synthesis, antimicrobial activity, QSAR studies and antiviral evaluation. Eur J Med Chem 45:2806–2816. https://doi.org/10.1016/j.ejmech.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  50. Abdel-Wahab BF, Abdel-Aziz HA, Ahmed EM (2009) Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. Eur J Med Chem 44:2632–2635. https://doi.org/10.1016/j.ejmech.2008.09.029

    Article  CAS  PubMed  Google Scholar 

  51. Sharmin N (2006) Computational analyses of NS3 serine protease of dengue virus. Bangladesh J Microbiol 23:107–113. https://doi.org/10.3329/bjm.v23i2.872

    Google Scholar 

  52. Olivares CI, Sierra-Alvarez R, Abrell L et al (2016) Zebrafish embryo toxicity of anaerobic biotransformation products from the insensitive munitions compound 2,4-dinitroanisole. Environ Toxicol Chem 35:2774–2781. https://doi.org/10.1002/etc.3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chin MC, Bosquesi PL, Santos JL (2011) A prodrug approach to improve the physico-chemical properties and decrease the genotoxicity of nitro compounds. Curr Pharm Des 17:3515–3526. https://doi.org/10.2174/138161211798194512

    Article  Google Scholar 

  54. Godói IP, Taranto MFR, Lima WG et al (2014) NS2B-NS3pro as a molecular target drugs development against dengue (in Portuguese). BBR Biochem Biotechnol Rep 3:16–30

    Article  Google Scholar 

  55. Brycki B, Dega-Szafran Z, Mirska I, Mirska I (2010) Synthesis and antimicrobial activities of some quaternary morpholinium chlorides. Pol J Microbiol 59:49–53

    CAS  PubMed  Google Scholar 

  56. Soukup O, Dolezal R, Malinak D et al (2016) Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety. Bioorg Med Chem 24:841–848. https://doi.org/10.1016/j.bmc.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  57. Krátký M, Vinsova J (2013) Antimycobacterial activity of quaternary pyridinium salts and pyridinium N-oxides-review. Curr Pharm Des 19:1343–1355. https://doi.org/10.2174/138161213804805711

    PubMed  Google Scholar 

  58. Sokolova AS, Yarovaya OI, Shernyukov AV et al (2013) New quaternary ammonium camphor derivatives and their antiviral activity, genotoxic effects and cytotoxicity. Bioorg Med Chem 21:6690–6698. https://doi.org/10.1016/j.bmc.2013.08.014

    Article  CAS  PubMed  Google Scholar 

  59. Tuladhar E, de Koning MC, Fundeanu I et al (2012) Different virucidal activities of hyperbranched quaternary ammonium coatings on poliovirus and influenza virus. Appl Environ Microbiol 78:2456–2458. https://doi.org/10.1128/AEM.07738-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Purohit AK, Balish MD, Leichty JJ et al (2012) Antiviral activity and synthesis of quaternized promazine derivatives against HSV-1. Bioorg Med Chem Lett 22:5308–5312. https://doi.org/10.1016/j.bmcl.2012.06.031

    Article  CAS  PubMed  Google Scholar 

  61. Aljofan M, Sganga ML, Lo MK et al (2009) Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro. Virol J 6:187. https://doi.org/10.1186/1743-422X-6-187

    Article  PubMed  PubMed Central  Google Scholar 

  62. Baron S, Sabados J, McKerlie ML, Coppenhaver DH (1988) Antiviral activity in urine is attributable to ammonium salts. J Biol Regul Homeost Agents 3:67–70

    Google Scholar 

  63. Jonkman JHG, Van Bork LE, Wijsbeek J et al (1977) Variations in the bioavailability of thiazinamium methylsulfate. Clin Pharmacol Ther 21:457–463. https://doi.org/10.1002/cpt1977214457

    Article  CAS  PubMed  Google Scholar 

  64. Janhg J, Wijsbeek J, Brouwer SH, Zeeuw RA (1974) Bioavailability of the quaternary ammonium compound thiazinamium methylsulphate (Multergan) after oral and intramuscular administration. J Pharm Pharmacol. https://doi.org/10.1111/j.2042-7158.1974.tb10085.x

    Google Scholar 

  65. Li Y, Liu X-G, Wang H-Y et al (2016) Pharmacokinetic studies of phellodendrine in rat plasma and tissues after intravenous administration using ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr B 1029:95–101. https://doi.org/10.1016/j.jchromb.2016.07.006

    Article  Google Scholar 

  66. Taylor DB, Nedergaard OA (1965) Relation between structure and action of quaternary ammonium neuromuscular blocking agents. Physiol Rev 45:523–554

    Article  CAS  PubMed  Google Scholar 

  67. Rao Z, Hu H, Tang J et al (2016) Steroidal ammonium compounds as new neuromuscular blocking agents. Chem Biol Drug Des. https://doi.org/10.1111/cbdd.12711

    Google Scholar 

  68. Guerrero JL, Daugherty PS, O’Malley MA (2017) Emerging technologies for protease engineering: new tools to clear out disease. Biotechnol Bioeng 114:33–38. https://doi.org/10.1002/bit.26066

    Article  CAS  PubMed  Google Scholar 

  69. Pillaiyar T, Namasivayam V, Manickam M (2016) Macrocyclic hepatitis C virus NS3/4A protease inhibitors: an overview of medicinal chemistry. Curr Med Chem 23:3404–3447. https://doi.org/10.2174/0929867323666160510122525

    Article  CAS  PubMed  Google Scholar 

  70. Behnam MAM, Graf D, Bartenschlager R et al (2015) Discovery of nanomolar dengue and West Nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue. J Med Chem 58:9354–9370. https://doi.org/10.1021/acs.jmedchem.5b01441

    Article  CAS  PubMed  Google Scholar 

  71. Zu X, Liu Y, Wang S et al (2014) Peptide inhibitor of Japanese encephalitis virus infection targeting envelope protein domain III. Antivir Res 104:7–14. https://doi.org/10.1016/j.antiviral.2014.01.011

    Article  CAS  PubMed  Google Scholar 

  72. Muñoz-Camargo C, Méndez MC, Salazar V et al (2016) Frog skin cultures secrete anti-yellow fever compounds. J Antibiot (Tokyo) 69:783–790. https://doi.org/10.1038/ja.2016.16

    Article  Google Scholar 

  73. Vaillant A (2016) Nucleic acid polymers: broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. Antivir Res 133:32–40. https://doi.org/10.1016/j.antiviral.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  74. Carmona-Ribeiro AM, de Melo Carrasco LD (2013) Cationic antimicrobial polymers and their assemblies. Int J Mol Sci 14:9906–9946. https://doi.org/10.3390/ijms14059906

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ivanenkov YA, Veselov MS, Shakhbazyan AG et al (2016) A comprehensive insight into the chemical space and ADME features of small molecule NS5A inhibitors. Curr Top Med Chem 16:1372–1382. https://doi.org/10.2174/1568026616666151120113040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

W.G.L and C.A.L are grateful to FAPEMIG for master’s degree fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaqueline Maria Siqueira Ferreira.

Ethics declarations

Funding

This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (UNIVERSAL 446997/2014-5 and 449984/2014-1) and Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG) (EDITAL APQ-00557-14).

Conflict of interest

All authors report that they do not have any conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Tim Skern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonel, C.A., Lima, W.G., dos Santos, M. et al. Pharmacophoric characteristics of dengue virus NS2B/NS3pro inhibitors: a systematic review of the most promising compounds. Arch Virol 163, 575–586 (2018). https://doi.org/10.1007/s00705-017-3641-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3641-5

Navigation