Skip to main content

Advertisement

Log in

Functional characteristics of the natural polymorphisms of HIV-1 gp41 in HIV-1 isolates from enfuvirtide-naïve Korean patients

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

HIV-1 gp41 plays a key role in viral entry. The insertion of Thr at position 4 and Met/Val/Phe substitutions at position 7 are frequently observed in the fusion peptide (FP) motif of gp41 without major enfuvirtide resistance associated with mutation in heptad repeats 1/2 (HR1/2) of HIV-1 isolates from Korean patients. Here, the influence of these mutations on their biological function was evaluated by employing HIV-1 variants with mutant FPs as shown previously and with recombinant HIV-1 using the env genes of 20 HIV-1 isolates from Korean patients. In an infectivity assay, all FP mutants showed lower infectivity than the wild-type NL4-3. In particular, the substitutions at position 7 led to much greater reductions in infectivity than the insertions at position 4. Nevertheless, the replication kinetics of most mutants were similar to those of the wild type, except that the FP mutants with an Ile insertion at position 4 and a Phe substitution at position 7 showed reduced replication. Moreover, most point mutants showed lower IC50 values for enfuvirtide than the wild type, whereas the L7M substitution resulted in a slightly increased IC50 value. The infectivity using the HIV-1 env recombinant viruses decreased in 14 cases but increased slightly in six cases compared with the wild type. Most recombinants were more susceptible to enfuvirtide than the wild type, except for three recombinants that showed slight resistance. Our findings may help to explain the potential mechanisms corresponding to the natural polymorphism of gp41 and to predict the efficiency of enfuvirtide in treatment of HIV-1-infected patients in Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Douek DC, Picker LJ, Koup RA (2003) T cell dynamics in HIV-1 infection. Annu Rev Immunol 21:265–304

    Article  CAS  PubMed  Google Scholar 

  2. Wensing AM, Calvez V, Gunthard HF, Johnson VA, Paredes R, Pillay D, Shafer RW, Richman DD (2014) 2014 Update of the drug resistance mutations in HIV-1. Top Antivir Med 22:642–650

    PubMed  PubMed Central  Google Scholar 

  3. Wilen CB, Tilton JC, Doms RW (2012) HIV: cell binding and entry. Cold Spring Harb Perspect Med 2:1–14

    Article  Google Scholar 

  4. Hill MD, Lorenzo E, Kumar A (2004) Changes in the human immunodeficiency virus V3 region that correspond with disease progression: a meta-analysis. Virus Res 106:27–33

    Article  CAS  PubMed  Google Scholar 

  5. Lohrengel S, Hermann F, Hagmann I, Oberwinkler H, Scrivano L, Hoffmann C, von Laer D, Dittmar MT (2005) Determinants of human immunodeficiency virus type 1 resistance to membrane-anchored gp41-derived peptides. J Virol 79:10237–10246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sagar M, Wu X, Lee S, Overbaugh J (2006) Human immunodeficiency virus type 1 V1-V2 envelope loop sequences expand and add glycosylation sites over the course of infection, and these modifications affect antibody neutralization sensitivity. J Virol 80:9586–9598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morikawa Y, Barsov E, Jones I (1993) Legitimate and illegitimate cleavage of human immunodeficiency virus glycoproteins by furin. J Virol 67:3601–3604

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pessoa LS, Valadao AL, Abreu CM, Calazans AR, Martins AN, Azevedo SS, Couto-Fernandez JC, Azevedo MC, Tanuri A (2011) Genotypic analysis of the gp41 HR1 region from HIV-1 isolates from enfuvirtide-treated and untreated patients. J Acquir Immune Defic Syndr 57(Suppl 3):S197–S201

    Article  CAS  PubMed  Google Scholar 

  9. Miyamoto F, Kodama EN (2012) Novel HIV-1 fusion inhibition peptides: designing the next generation of drugs. Antivir Chem Chemother 22:151–158

    Article  CAS  PubMed  Google Scholar 

  10. Wilen CB, Tilton JC, Doms RW (2012) Molecular mechanisms of HIV entry. Adv Exp Med Biol 726:223–242

    Article  CAS  PubMed  Google Scholar 

  11. Kilby JM, Eron JJ (2003) Novel therapies based on mechanisms of HIV-1 cell entry. N Engl J Med 348:2228–2238

    Article  CAS  PubMed  Google Scholar 

  12. Cooper DA, Lange JM (2004) Peptide inhibitors of virus-cell fusion: enfuvirtide as a case study in clinical discovery and development. Lancet Infect Dis 4:426–436

    Article  CAS  PubMed  Google Scholar 

  13. Greenberg ML, Cammack N (2004) Resistance to enfuvirtide, the first HIV fusion inhibitor. J Antimicrob Chemother 54:333–340

    Article  CAS  PubMed  Google Scholar 

  14. Trivedi VD, Cheng SF, Wu CW, Karthikeyan R, Chen CJ, Chang DK (2003) The LLSGIV stretch of the N-terminal region of HIV-1 gp41 is critical for binding to a model peptide, T20. Protein Eng 16:311–317

    Article  CAS  PubMed  Google Scholar 

  15. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46:1896–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Poveda E, Rodes B, Toro C, Martin-Carbonero L, Gonzalez-Lahoz J, Soriano V (2002) Evolution of the gp41 env region in HIV-infected patients receiving T-20, a fusion inhibitor. AIDS 16:1959–1961

    Article  PubMed  Google Scholar 

  17. Zollner B, Feucht HH, Schroter M, Schafer P, Plettenberg A, Stoehr A, Laufs R (2001) Primary genotypic resistance of HIV-1 to the fusion inhibitor T-20 in long-term infected patients. AIDS 15:935–936

    Article  CAS  PubMed  Google Scholar 

  18. Mink M, Mosier SM, Janumpalli S, Davison D, Jin L, Melby T, Sista P, Erickson J, Lambert D, Stanfield-Oakley SA, Salgo M, Cammack N, Matthews T, Greenberg ML (2005) Impact of human immunodeficiency virus type 1 gp41 amino acid substitutions selected during enfuvirtide treatment on gp41 binding and antiviral potency of enfuvirtide in vitro. J Virol 79:12447–12454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu J, Sista P, Giguel F, Greenberg M, Kuritzkes DR (2004) Relative replicative fitness of human immunodeficiency virus type 1 mutants resistant to enfuvirtide (T-20). J Virol 78:4628–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu L, Pozniak A, Wildfire A, Stanfield-Oakley SA, Mosier SM, Ratcliffe D, Workman J, Joall A, Myers R, Smit E, Cane PA, Greenberg ML, Pillay D (2005) Emergence and evolution of enfuvirtide resistance following long-term therapy involves heptad repeat 2 mutations within gp41. Antimicrob Agents Chemother 49:1113–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jang DH, Yoon CH, Choi BS, Chung YS, Kim HY, Chi SG, Kim SS (2014) Characterization of Gp41 polymorphisms in the fusion peptide domain and T-20 (Enfuvirtide) resistance-associated regions in Korean HIV-1 isolates. J Korean Med Sci 29:456–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morozov VA, Morozov AV, Schurmann D, Jessen H, Kucherer C (2007) Transmembrane protein polymorphisms and resistance to T-20 (Enfuvirtide, Fuzeon) in HIV-1 infected therapy-naive seroconverters and AIDS patients under HAART-T-20 therapy. Virus Genes 35:167–174

    Article  CAS  PubMed  Google Scholar 

  23. Reis MN, de Alcantara KC, Cardoso LP, Stefani MM (2014) Polymorphisms in the HIV-1 gp41 env gene, natural resistance to enfuvirtide (T-20) and pol resistance among pregnant Brazilian women. J Med Virol 86:8–17

    Article  CAS  PubMed  Google Scholar 

  24. Chong H, Xu S, Zhang C, Nie J, Wang Y (2009) Mutation L33M in the HR1 region of HIV-1 gp41 may play a role in T20 resistance. J Clin Virol 45:255–258

    Article  CAS  PubMed  Google Scholar 

  25. Pritsker M, Rucker J, Hoffman TL, Doms RW, Shai Y (1999) Effect of nonpolar substitutions of the conserved Phe11 in the fusion peptide of HIV-1 gp41 on its function, structure, and organization in membranes. Biochemistry 38:11359–11371

    Article  CAS  PubMed  Google Scholar 

  26. Kim HY, Choi BS, Kim SS, Roh TY, Park J, Yoon CH (2014) NUCKS1, a novel Tat coactivator, plays a crucial role in HIV-1 replication by increasing Tat-mediated viral transcription on the HIV-1 LTR promoter. Retrovirology 11:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Z, Shan M, Li L, Lu L, Meng S, Chen C, He Y, Jiang S, Zhang L (2011) In vitro selection and characterization of HIV-1 variants with increased resistance to sifuvirtide, a novel HIV-1 fusion inhibitor. J Biol Chem 286:3277–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim GJ, Nam JG, Shin BG, Kee MK, Kim EJ, Lee JS, Kim SS (2008) National survey of prevalent HIV strains: limited genetic variation of Korean HIV-1 clade B within the population of Korean men who have sex with men. J Acquir Immune Defic Syndr 48:127–132

    Article  PubMed  Google Scholar 

  29. Delahunty MD, Rhee I, Freed EO, Bonifacino JS (1996) Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: identification of critical glycine residues. Virology 218:94–102

    Article  CAS  PubMed  Google Scholar 

  30. Freed EO, Myers DJ, Risser R (1990) Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc Natl Acad Sci USA 87:4650–4654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Freed EO, Delwart EL, Buchschacher GL Jr, Panganiban AT (1992) A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc Natl Acad Sci USA 89:70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mobley PW, Waring AJ, Sherman MA, Gordon LM (1999) Membrane interactions of the synthetic N-terminal peptide of HIV-1 gp41 and its structural analogs. Biochim Biophys Acta 1418:1–18

    Article  CAS  PubMed  Google Scholar 

  33. Qiu S, Yi H, Hu J, Cao Z, Wu Y, Li W (2012) The binding mode of fusion inhibitor T20 onto HIV-1 gp41 and relevant T20-resistant mechanisms explored by computational study. Curr HIV Res 10:182–194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an intramural grant from the Korea National Institute of Health (Grant Number: 2013-N51004-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Kang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Y. Shin and C.-H. Yoon contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, Y., Yoon, CH., Yang, HJ. et al. Functional characteristics of the natural polymorphisms of HIV-1 gp41 in HIV-1 isolates from enfuvirtide-naïve Korean patients. Arch Virol 161, 1547–1557 (2016). https://doi.org/10.1007/s00705-016-2807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2807-x

Keywords

Navigation