Skip to main content
Log in

Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adaption in mice

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The worldwide circulation of H9N2 avian influenza virus in poultry, the greater than 2.3 % positive rate for anti-H9 antibodies in poultry-exposed workers, and several reports of human infection indicate that H9N2 virus is a potential threat to human health. Here, we found three mutations that conferred high virulence to H9N2 virus in mice after four passages. The PB2-E627K substitution rapidly appeared at the second passage and played a decisive role in virulence. Polymerase complexes possessing PB2-E627K displayed 16.1-fold higher viral polymerase activity when compared to the wild-type virus, which may account for enhanced virulence of this virus. The other two substitutions (HA-N313D and HA-N496S) enhanced binding to both α2,3-linked and α2,6-linked sialic acid receptors; however, the HA-N313D and N496S substitutions alone decreased the virulence of mouse-adapted virus. Furthermore, this mouse-adapted virus was still not transmissible among guinea pigs by direct contact (0/3 pairs). Our findings show that adaption in mice enhanced the viral polymerase activity and receptor-binding ability, which resulted in a virulent phenotype in mice but not a transmissible phenotype in guinea pigs, indicating that host factors play an important role in adaptive evolution of influenza in new hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu Y, Tefsen B, Shi Y, Gao GF (2014) Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol 22(4):183–191. doi:10.1016/j.tim.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  2. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9(10):e1003657. doi:10.1371/journal.ppat.1003657

    Article  PubMed Central  PubMed  Google Scholar 

  3. Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, Fouchier RA (2006) Global patterns of influenza a virus in wild birds. Science 312(5772):384–388. doi:10.1126/science.1122438

    Article  CAS  PubMed  Google Scholar 

  4. Ma W, Kahn RE, Richt JA (2008) The pig as a mixing vessel for influenza viruses: human and veterinary implications. J Mol Genet Med 3(1):158–166

    PubMed Central  PubMed  Google Scholar 

  5. Taubenberger JK, Kash JC (2010) Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 7(6):440–451. doi:10.1016/j.chom.2010.05.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Claas EC, de Jong JC, van Beek R, Rimmelzwaan GF, Osterhaus AD (1998) Human influenza virus A/HongKong/156/97 (H5N1) infection. Vaccine 16(9–10):977–978. doi:10.1016/S0264-410X(98)00005-X

    Article  CAS  PubMed  Google Scholar 

  7. Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF (1999) Human infection with influenza H9N2. Lancet 354(9182):916–917. doi:10.1016/S0140-6736(99)03311-5

    Article  CAS  PubMed  Google Scholar 

  8. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368(20):1888–1897. doi:10.1056/NEJMoa1304459

    Article  CAS  PubMed  Google Scholar 

  9. Wei SH, Yang JR, Wu HS, Chang MC, Lin JS, Lin CY, Liu YL, Lo YC, Yang CH, Chuang JH, Lin MC, Chung WC, Liao CH, Lee MS, Huang WT, Chen PJ, Liu MT, Chang FY (2013) Human infection with avian influenza A H6N1 virus: an epidemiological analysis. Lancet Respir Med 1(10):771–778. doi:10.1016/S2213-2600(13)70221-2

    Article  PubMed  Google Scholar 

  10. Zhang W, Wan J, Qian K, Liu X, Xiao Z, Sun J, Zeng Z, Wang Q, Zhang J, Jiang G, Nie C, Jiang R, Ding C, Li R, Horby P, Gao Z (2014) Clinical characteristics of human infection with a novel avian-origin influenza A(H10N8) virus. Chin Med J (Engl) 127(18):3238–3242. doi:10.3760/cma.j.issn.0366-6999.20140994

    Google Scholar 

  11. Homme PJ, Easterday BC (1970) Avian influenza virus infections. 3. Antibody response by turkeys to influenza A-turkey-Wisconsin-1966 virus. Avian Dis 14(2):277–284

    Article  CAS  PubMed  Google Scholar 

  12. Xu KM, Smith GJ, Bahl J, Duan L, Tai H, Vijaykrishna D, Wang J, Zhang JX, Li KS, Fan XH, Webster RG, Chen H, Peiris JS, Guan Y (2007) The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005. J Virol 81(19):10389–10401. doi:10.1128/JVI.00979-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wan H, Sorrell EM, Song H, Hossain MJ, Ramirez-Nieto G, Monne I, Stevens J, Cattoli G, Capua I, Chen LM, Donis RO, Busch J, Paulson JC, Brockwell C, Webby R, Blanco J, Al-Natour MQ, Perez DR (2008) Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS One 3(8):e2923. doi:10.1371/journal.pone.0002923

    Article  PubMed Central  PubMed  Google Scholar 

  14. Guan Y, Shortridge KF, Krauss S, Chin PS, Dyrting KC, Ellis TM, Webster RG, Peiris M (2000) H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. J Virol 74(20):9372–9380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zhang K, Zhang Z, Yu Z, Li L, Cheng K, Wang T, Huang G, Yang S, Zhao Y, Feng N, Fu J, Qin C, Gao Y, Xia X (2013) Domestic cats and dogs are susceptible to H9N2 avian influenza virus. Virus Res 175(1):52–57. doi:10.1016/j.virusres.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  16. Butt KM, Smith GJ, Chen H, Zhang LJ, Leung YH, Xu KM, Lim W, Webster RG, Yuen KY, Peiris JS, Guan Y (2005) Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol 43(11):5760–5767. doi:10.1128/JCM.43.11.5760-5767.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Huang R, Wang AR, Liu ZH, Liang W, Li XX, Tang YJ, Miao ZM, Chai TJ (2013) Seroprevalence of avian influenza H9N2 among poultry workers in Shandong Province, China. Eur J Clin Microbiol Infect Dis 32(10):1347–1351. doi:10.1007/s10096-013-1888-7

    Article  CAS  PubMed  Google Scholar 

  18. van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2007) Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 171(4):1215–1223. doi:10.2353/ajpath.2007.070248

    Article  PubMed Central  PubMed  Google Scholar 

  19. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569. doi:10.1146/annurev.biochem.69.1.531

    Article  CAS  PubMed  Google Scholar 

  20. Belser JA, Maines TR, Tumpey TM, Katz JM (2010) Influenza A virus transmission: contributing factors and clinical implications. Expert Rev Mol Med 12:e39. doi:10.1017/S1462399410001705

    Article  PubMed  Google Scholar 

  21. Gao Y, Zhang Y, Shinya K, Deng G, Jiang Y, Li Z, Guan Y, Tian G, Li Y, Shi J, Liu L, Zeng X, Bu Z, Xia X, Kawaoka Y, Chen H (2009) Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog 5(12):e1000709. doi:10.1371/journal.ppat.1000709

    Article  PubMed Central  PubMed  Google Scholar 

  22. Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J (2005) The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA 102(51):18590–18595. doi:10.1073/pnas.0507415102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Steel J, Lowen AC, Mubareka S, Palese P (2009) Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog 5(1):e1000252. doi:10.1371/journal.ppat.1000252

    Article  PubMed Central  PubMed  Google Scholar 

  24. Subbarao EK, London W, Murphy BR (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67(4):1761–1764

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Cheng K, Yu Z, Chai H, Sun W, Xin Y, Zhang Q, Huang J, Zhang K, Li X, Yang S, Wang T, Zheng X, Wang H, Qin C, Qian J, Chen H, Hua Y, Gao Y, Xia X (2014) PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology 468C–470C:207–213. doi:10.1016/j.virol.2014.08.010

    Article  Google Scholar 

  26. Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293(5536):1840–1842. doi:10.1126/science.1062882

    Article  CAS  PubMed  Google Scholar 

  27. Shinya K, Watanabe S, Ito T, Kasai N, Kawaoka Y (2007) Adaptation of an H7N7 equine influenza A virus in mice. J Gen Virol 88(Pt 2):547–553. doi:10.1099/vir.0.82411-0

    Article  CAS  PubMed  Google Scholar 

  28. Yamayoshi S, Yamada S, Fukuyama S, Murakami S, Zhao D, Uraki R, Watanabe T, Tomita Y, Macken C, Neumann G, Kawaoka Y (2014) Virulence-affecting amino acid changes in the PA protein of H7N9 influenza A viruses. J Virol 88(6):3127–3134. doi:10.1128/JVI.03155-13

    Article  PubMed Central  PubMed  Google Scholar 

  29. Metreveli G, Gao Q, Mena I, Schmolke M, Berg M, Albrecht RA, Garcia-Sastre A (2014) The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice. Virus Res 188:97–102. doi:10.1016/j.virusres.2014.03.023

    Article  CAS  PubMed  Google Scholar 

  30. Sun Y, Xu Q, Shen Y, Liu L, Wei K, Sun H, Pu J, Chang KC, Liu J (2014) Naturally occurring mutations in the PA gene are key contributors to increased virulence of pandemic H1N1/09 influenza virus in mice. J Virol 88(8):4600–4604. doi:10.1128/JVI.03158-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Xu L, Bao L, Li F, Lv Q, Ma Y, Zhou J, Xu Y, Deng W, Zhan L, Zhu H, Ma C, Shu Y, Qin C (2011) Adaption of seasonal H1N1 influenza virus in mice. PLoS One 6(12):e28901. doi:10.1371/journal.pone.0028901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79(18):12058–12064. doi:10.1128/JVI.79.18.12058-12064.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440(7083):435–436. doi:10.1038/440435a

    Article  CAS  PubMed  Google Scholar 

  34. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486(7403):420–428. doi:10.1038/nature10831

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Zhang Y, Zhang Q, Kong H, Jiang Y, Gao Y, Deng G, Shi J, Tian G, Liu L, Liu J, Guan Y, Bu Z, Chen H (2013) H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science 340(6139):1459–1463. doi:10.1126/science.1229455

    Article  CAS  PubMed  Google Scholar 

  36. Zhong L, Wang X, Li Q, Liu D, Chen H, Zhao M, Gu X, He L, Liu X, Gu M, Peng D (2014) Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens. J Virol 88(17):9568–9578. doi:10.1128/JVI.00943-14

    Article  PubMed Central  PubMed  Google Scholar 

  37. DuBois RM, Zaraket H, Reddivari M, Heath RJ, White SW, Russell CJ (2011) Acid stability of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity. PLoS Pathog 7(12):e1002398. doi:10.1371/journal.ppat.1002398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Zhang K, Xu W, Zhang Z, Wang T, Sang X, Cheng K, Yu Z, Zheng X, Wang H, Zhao Y, Huang G, Yang S, Qin C, Gao Y, Xia X (2013) Experimental infection of non-human primates with avian influenza virus (H9N2). Arch Virol 158(10):2127–2134. doi:10.1007/s00705-013-1721-8

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Zhang Q, Gao Y, He X, Kong H, Jiang Y, Guan Y, Xia X, Shu Y, Kawaoka Y, Bu Z, Chen H (2012) Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. J Virol 86(18):9666–9674. doi:10.1128/JVI.00958-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Sakabe S, Ozawa M, Takano R, Iwastuki-Horimoto K, Kawaoka Y (2011) Mutations in PA, NP, and HA of a pandemic (H1N1) 2009 influenza virus contribute to its adaptation to mice. Virus Res 158(1–2):124–129. doi:10.1016/j.virusres.2011.03.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wang J, Sun Y, Xu Q, Tan Y, Pu J, Yang H, Brown EG, Liu J (2012) Mouse-adapted H9N2 influenza A virus PB2 protein M147L and E627K mutations are critical for high virulence. PLoS One 7(7):e40752. doi:10.1371/journal.pone.0040752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Li X, Shi J, Guo J, Deng G, Zhang Q, Wang J, He X, Wang K, Chen J, Li Y, Fan J, Kong H, Gu C, Guan Y, Suzuki Y, Kawaoka Y, Liu L, Jiang Y, Tian G, Bu Z, Chen H (2014) Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses. PLoS Pathog 10(11):e1004508. doi:10.1371/journal.ppat.1004508

    Article  PubMed Central  PubMed  Google Scholar 

  43. Li J, Li Y, Hu Y, Chang G, Sun W, Yang Y, Kang X, Wu X, Zhu Q (2011) PB1-mediated virulence attenuation of H5N1 influenza virus in mice is associated with PB2. J Gen Virol 92(Pt 6):1435–1444. doi:10.1099/vir.0.030718-0

    Article  CAS  PubMed  Google Scholar 

  44. Song MS, Pascua PN, Lee JH, Baek YH, Lee OJ, Kim CJ, Kim H, Webby RJ, Webster RG, Choi YK (2009) The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J Virol 83(23):12325–12335. doi:10.1128/JVI.01373-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Bogs J, Kalthoff D, Veits J, Pavlova S, Schwemmle M, Manz B, Mettenleiter TC, Stech J (2011) Reversion of PB2-627E to -627K during replication of an H5N1 Clade 2.2 virus in mammalian hosts depends on the origin of the nucleoprotein. J Virol 85(20):10691–10698. doi:10.1128/JVI.00786-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Zhang Y, Zhu J, Li Y, Bradley KC, Cao J, Chen H, Jin M, Zhou H (2013) Glycosylation on hemagglutinin affects the virulence and pathogenicity of pandemic H1N1/2009 influenza A virus in mice. PLoS One 8(4):e61397. doi:10.1371/journal.pone.0061397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Medina RA, Stertz S, Manicassamy B, Zimmermann P, Sun X, Albrecht RA, Uusi-Kerttula H, Zagordi O, Belshe RB, Frey SE, Tumpey TM, Garcia-Sastre A (2013) Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Sci Transl Med 5(187):187. doi:10.1126/scitranslmed.3005996

    Article  Google Scholar 

  48. Zaraket H, Bridges OA, Russell CJ (2013) The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus replication and pathogenesis in mice. J Virol 87(9):4826–4834. doi:10.1128/JVI.03110-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Reed ML, Yen HL, DuBois RM, Bridges OA, Salomon R, Webster RG, Russell CJ (2009) Amino acid residues in the fusion peptide pocket regulate the pH of activation of the H5N1 influenza virus hemagglutinin protein. J Virol 83(8):3568–3580. doi:10.1128/JVI.02238-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Srinivasan K, Raman R, Jayaraman A, Viswanathan K, Sasisekharan R (2013) Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin. PLoS One 8(4):e59550. doi:10.1371/journal.pone.0059550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ning ZY, Luo MY, Qi WB, Yu B, Jiao PR, Liao M (2009) Detection of expression of influenza virus receptors in tissues of BALB/c mice by histochemistry. Vet Res Commun 33(8):895–903. doi:10.1007/s11259-009-9307-3

    Article  PubMed  Google Scholar 

  52. Cueno ME, Imai K, Shimizu K, Ochiai K (2013) Homology modeling study toward identifying structural properties in the HA2 B-loop that would influence the HA1 receptor-binding site. J Mol Graph Model 44:161–167. doi:10.1016/j.jmgm.2013.05.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Peter Wilker for editing the manuscript. This work was supported by the Key Projects in the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period (2012ZX10004-502); National High Technology Research and Development Program (No. 2012AA022006) and the National Science and Technology Major Project (No. 2012ZX1000301008).

Conflict of interest

None of the authors report a conflict of interest, and all authors approved the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuwei Gao or Xianzhu Xia.

Additional information

X. Sang and A. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, X., Wang, A., Chai, T. et al. Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adaption in mice. Arch Virol 160, 1267–1277 (2015). https://doi.org/10.1007/s00705-015-2383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2383-5

Keywords

Navigation