Skip to main content

Advertisement

Log in

Implication of Hsc70, PDI and integrin αvβ3 involvement during entry of the murine rotavirus ECwt into small-intestinal villi of suckling mice

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In the present study, a homologous rotavirus, ECwt, infecting small intestinal villi isolated from ICR and BALB/c mice were used as a model for identifying cell-surface molecules involved in rotavirus entry. Small-intestinal villi were treated with anti-Hsc70, anti-PDI, anti-integrin β3 or anti-ERp57 antibodies or their corresponding F(ab’)2 fragments before inoculation with rotavirus ECwt, RRV or Wa. Pretreatment of villi decreased virus infectivity by about 50–100 % depending of the rotavirus strain, antibody structure and detection assay used. Similar results were obtained by treating viral inocula with purified proteins Hsc70, PDI or integrin β3 before inoculation of untreated villi. Rotavirus infection of villi proved to be sensitive to membrane-impermeant thiol/disulfide inhibitors such as DTNB and bacitracin, suggesting the involvement of a redox reaction in infection. The present results suggest that PDI, Hsc70 and integrin β3 are used by both homologous and heterologous rotaviruses during infection of isolated mouse villi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abou-Jaoude G, Sureau C (2007) Entry of hepatitis delta virus requires the conserved cysteine residues of the hepatitis B virus envelope protein antigenic loop and is blocked by inhibitors of thiol-disulfide exchange. J Virol 81:13057–13066

    Article  PubMed  CAS  Google Scholar 

  2. Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR (2009) Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 324:1444–1447

    Article  PubMed  CAS  Google Scholar 

  3. Arias CF, Lizano M, López S (1987) Synthesis in Escherichia coli and immunological characterization of a polypeptide containing the cleavage sites associated with trypsin enhancement of rotavirus SA11 infectivity. J Gen Virol 68:633–642

    Article  PubMed  CAS  Google Scholar 

  4. Mendez E, Arias CF, Lopez S (1993) Binding to sialic acids is not an essential step for the entry of animal rotaviruses to epithelial cells in culture. J Virol 67:5253–5259

    PubMed  CAS  Google Scholar 

  5. Baker M, Prasad BV (2010) Rotavirus cell entry. Curr Top Microbiol Immunol 343:121–148

    Article  PubMed  CAS  Google Scholar 

  6. Beaulieu JF (1992) Differential expression of the VLA family of integrins along the crypt-villus axis in the human small intestine. J Cell Sci 102:427–436

    PubMed  CAS  Google Scholar 

  7. Calderon MN, Guerrero CA, Acosta O, Lopez S, Arias CF (2012) Inhibiting rotavirus infection by membrane-impermeant thiol/disulfide exchange blockers and antibodies against protein disulfide isomerase. Intervirology 55:451–464

    Article  PubMed  CAS  Google Scholar 

  8. Ciarlet M, Ludert JE, Iturriza-Gómara M, Liprandi F, Gray JJ, Desselberger U, Estes MK (2002) Initial interaction of rotavirus strains with N-acetylneuraminic (sialic) acid residues on the cell surface correlates with VP4 genotype, not species of origin. J Virol 76:4087–4095

    Article  PubMed  CAS  Google Scholar 

  9. Crawford SE, Mukherjee SK, Estes MK, Lawton JA, Shaw AL, Ramig RF, Prasad BV (2001) Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol 75:6052–6061

    Article  PubMed  CAS  Google Scholar 

  10. Croyle MA, Walter E, Janich S, Roessler BJ, Amidon GL (1998) Role of integrin expression in adenovirus-mediated gene delivery to the intestinal epithelium. Hum Gene Ther 9:561–573

    Article  PubMed  CAS  Google Scholar 

  11. Danti P (2011) Enter the kill zone: initiation of death signaling during virus entry. Virology 411:316–324

    Article  Google Scholar 

  12. Delmas O, Breton M, Sapin C, Bivic AL, Colard O, Trugnan G (2007) Heterogeneity of raft-type membrane microdomains associated with VP4, the rotavirus spike protein, in Caco-2 and MA 104 cells. J Virol 81:1610–1618

    Article  PubMed  CAS  Google Scholar 

  13. Graham KL, Fleming FE, Halasz P, Hewish MJ, Nagesha HS, Holmes IH, Takada Y, Coulson BS (2005) Rotaviruses interact with α4β7 and α4β1 integrins by binding the same integrin domains as natural ligands. J Gen Virol 86:3397–3408

    Article  PubMed  CAS  Google Scholar 

  14. Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, Robinson MK, Coulson BS (2003) Integrin-using rotaviruses bind α2β1 integrin α2 I domain via VP4 DGE sequence and recognize αxβ2 and ανβ3 by using VP7 during cell entry. J Virol 77:9969–9978

    Article  PubMed  CAS  Google Scholar 

  15. Gualtero DF, Guzmán F, Acosta O, Guerrero CA (2007) Amino acid domains 280–297 of VP6 and 531–554 of VP4 are implicated in heat shock cognate protein hsc70-mediated rotavirus infection. Arch Virol 152:2183–2196

    Article  PubMed  CAS  Google Scholar 

  16. Guerrero CA, Mendez E, Zárate S, Isa P, López S, Arias CF (2000) Integrin αvβ3 mediates rotavirus cell entry. Proc Natl Acad Sci USA 97:14644–14649

    Article  PubMed  CAS  Google Scholar 

  17. Guerrero CA, Santana AY, Acosta O (2010) Mouse intestinal villi as a model system for studies of rotavirus infection. J Virol Methods 168:22–30

    Article  PubMed  CAS  Google Scholar 

  18. Guglielmi KM, McDonald SM, Patton JT (2010) Mechanism of intraparticle synthesis of the rotavirus double-stranded RNA genome. J Biol Chem 285:18123–18128

    Article  PubMed  CAS  Google Scholar 

  19. Gutiérrez M, Isa P, Sánchez-San Martin C, Pérez-Vargas J, Espinosa R, Arias CF, López S (2010) Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis. J Virol 84:9161–9169

    Article  PubMed  Google Scholar 

  20. Halasz P, Holloway G, Coulson BS (2010) Death mechanisms in epithelial cells following rotavirus infection, exposure to inactivated rotavirus or genome transfection. J Gen Virol 91:2007–2018

    Article  PubMed  CAS  Google Scholar 

  21. Hamilton TE, McClane SJ, Baldwin S, Burke C, Patel H, Rombeau JL, Raper SE (1997) Efficient adenoviral-mediated murine neonatal small intestinal gene transfer is dependent on αv integrin expression. J Pediatr Surg 32:1695–1703

    Article  PubMed  CAS  Google Scholar 

  22. Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  23. Haselhorst T, Fleming FE, Dyason JC, Hartnell RD, Yu X, Holloway G, Santegoets K, Kiefel MJ, Blanchard H et al (2009) Sialic acid dependence in rotavirus host cell invasion. Nat Chem Biol 5:91–93

    Article  PubMed  CAS  Google Scholar 

  24. Helenius A (2007) Virus entry and uncoating. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott, Philadephia

    Google Scholar 

  25. Isa P, Realpe M, Romero P, Lopez S, Arias CF (2004) Rotavirus RRV associates with lipid membrane microdomains during cell entry. Virology 322:370–381

    Article  PubMed  CAS  Google Scholar 

  26. Isa P, Gutierrez M, Arias CF, Lopez S (2008) Rotavirus cell entry. Future Med 3:135–146

    CAS  Google Scholar 

  27. Jain S, McGinnes LW, Morrison TG (2007) Thiol/disulfide exchange is required for membrane fusion directed by the Newcastle disease virus fusion protein. J Virol 81:2328–2339

    Article  PubMed  CAS  Google Scholar 

  28. Jordan PA, Gibbins JM (2006) Extracellular disulfide exchange and the regulation of cellular function. Antioxid Redox Signal 8:312–324

    Article  PubMed  CAS  Google Scholar 

  29. Keirstead ND, Coombs KM (1998) Absence of superinfection exclusion during asynchronous reovirus infections of mouse, monkey, and human cell lines. Virus Res 54:225–235

    Article  PubMed  CAS  Google Scholar 

  30. Kim ISTS, Babyonyshev M, Dormitzer PR, Harrison SC (2010) Effect of mutations in VP5* hydrophobic loops on rotavirus cell entry. J Virol 84:6200–6207

    Article  PubMed  CAS  Google Scholar 

  31. Lahav J, Wijnen EM, Hess O, Hamaia SW, Griffiths D, Makris M, Caballero CG, Essex DW, Farndale RW (2003) Enzymatically catalyzed disulfide exchange is required for platelet adhesion to collagen via integrin α2β1. Blood 102:2085–2092

    Article  PubMed  CAS  Google Scholar 

  32. Lopez S, Arias CF (2006) Early steps in rotavirus cell entry. Curr Top Microbiol Immunol 309:39–66

    Article  PubMed  CAS  Google Scholar 

  33. Lopez S, Arias CF (2004) Multistep entry of rotavirus into cells: a versaillesque dance. Trends Microbiol 12:271–278

    Article  PubMed  CAS  Google Scholar 

  34. Mainou BA, Dermody TS (2011) Src kinase mediates productive endocytic sorting of reovirus during cell entry. J Virol 85:3203–3213

    Article  PubMed  CAS  Google Scholar 

  35. Martín-Villa JM, Ferre-Lopez S, Lopez-Suárez JC, Corell A, Pérez-Blas M, Arnaiz-Villena A (1997) Cell surface phenotype and ultramicroscopic analysis of purified human enterocytes: a possible antigen-presenting cell in the intestine. Tissue Antigens 50:586–592

    Article  PubMed  Google Scholar 

  36. Maruri-Avidal L, López S, Arias CF (2008) Endoplasmic reticulum chaperones are involved in the morphogenesis of rotavirus infectious particles. J Virol 82:5368–5380

    Article  PubMed  CAS  Google Scholar 

  37. Mendez E, Lopez S, Cuadras MA, Romero P, Arias CF (1999) Entry of rotaviruses is a multistep process. Virology 263:450–459

    Article  PubMed  CAS  Google Scholar 

  38. Mirazimi A, Svensson L (1998) Carbohydrates facilitate correct disulfide bond formation and folding of rotavirus VP7. J Virol 72:3887–3892

    PubMed  CAS  Google Scholar 

  39. O’Neil lS, Robinson A, Deering A, Ryan M, Fitzgerald DJ, Moran N (2000) The platelet integrin αIIbβ3 has an endogenous thiol isomerase activity. J Biol Chem

  40. Parashar UD, Gibson CJ, Bresee JS, Glass RI (2006) Rotavirus and severe childhood diarrhea. Emerg Infect Dis 12:304–306

    Article  PubMed  Google Scholar 

  41. Pesavento JB, Crawford SE, Estes MK, Prasad BV (2006) Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol 309:189–219

    Article  PubMed  CAS  Google Scholar 

  42. Ryser HJ, Levy EM, Mandel R, DiSciullo GJ (1994) Inhibition of human immunodeficiency virus infection by agents that interfere with thiol-disulfide interchange upon virus-receptor interaction. Proc Natl Acad Sci USA 91:4559–4563

    Article  PubMed  CAS  Google Scholar 

  43. Simovich M, Hainsworth LN, Fields P, Umbreit JN, Conrad ME (2003) Localization of the iron transport proteins mobilferrin and DMT-1 in the duodenum: the surprising role of mucin. Am J Hematol 74:32–45

    Article  PubMed  CAS  Google Scholar 

  44. Stewart L, Ireton GC, Champoux JJ (1997) Reconstitution of human topoisomerase I by fragment complementation. J Mol Biol 269:355–357

    Article  PubMed  CAS  Google Scholar 

  45. Swiatkowska M, Szymanski J, Padula G, Cierniewski CS (2008) Interaction and functional association of protein disulfide isomerase with αVβ3 integrin on endothelial cells. FEBS J 275:1813–1823

    Article  PubMed  CAS  Google Scholar 

  46. Takada Y, Ye X, Simon S (2007) Protein family review. The integrins. Genome Biol 8:215

    Article  PubMed  Google Scholar 

  47. Yoder JD, Trask SD, Vo PT, Binka M, Feng N, Harrison SC, Greenberg HB, Dormitzer PR (2009) VP5* rearranges when rotavirus uncoats. J Virol 83:11372–11377

    Article  PubMed  CAS  Google Scholar 

  48. Zarate S, Cuadras MA, Espinosa R, Romero P, Juarez KO, Camacho-Nuez M, Arias CF, Lopez S (2003) Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol 77:7254–7260

    Article  PubMed  CAS  Google Scholar 

  49. Zárate S, Espinosa R, Romero P, Arias CF, López S (2004) VP7 mediates the interaction of rotaviruses with integrin αvβ3 through a novel integrin-binding site. J Virol 78:10839–10847

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant (No. 1101-405-20300, 193-2007) awarded by Colciencias to O. Acosta and C. A. Guerrero.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Guerrero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santana, A.Y., Guerrero, C.A. & Acosta, O. Implication of Hsc70, PDI and integrin αvβ3 involvement during entry of the murine rotavirus ECwt into small-intestinal villi of suckling mice. Arch Virol 158, 1323–1336 (2013). https://doi.org/10.1007/s00705-013-1626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1626-6

Keywords

Navigation