Skip to main content

Advertisement

Log in

Pathogen-derived resistance using a viral nucleocapsid gene confers only partial non-durable protection in peanut against peanut bud necrosis virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Genetic engineering of peanut (Arachis hypogaea L.) using the gene encoding for the nucleocapsid protein (N gene) of peanut bud necrosis virus (PBNV; genus Tospovirus, family Bunyaviridae) was used to impart resistance to bud necrosis disease in peanut (PBND), a disease for which no durable resistance is available in the existing germplasm. Over 200 transgenic lines of peanut var. JL 24 were developed for which integration and expression of the transgenes was confirmed by PCR, Southern hybridization, RT-PCR and western blot analysis. The T1 and T2 generation transgenic plants were assayed through virus challenge in the greenhouse by using mechanical sap inoculation at 1:100 and 1:50 dilutions of PBNV, and they showed varying levels of disease incidence and intensity. Greenhouse and field evaluation with T2 generation plants indicated somewhat superior performance of the three transgenic events that showed considerable reduction in disease incidence. However, only one of these events showed over 75 % reduction in disease incidence when compared to the untransformed control, indicating partial and non-durable resistance to PBND using the viral N-gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Able JA, Rathu S, Godwin ID (2001) The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell Dev Biol Plant 37:341–348

    Article  CAS  Google Scholar 

  2. Bhatnagar-Mathur P, Anjaiah V, Kirti PBK, Sharma KK (2008) Agrobacterium-mediated genetic transformation of peanut. In: Kirti PBK (ed) Handbook of new technologies for genetic improvement of legumes. CRC Press, Boca Raton, pp 227–251

    Chapter  Google Scholar 

  3. Brar GS, Cohen BA, Vick XX, Johnson GW (1994) Recovery of transgenic peanut (Arachis hypogea L.) plants from elite cultivars using ACCELL technology. Plant J 5:745–753

    Article  Google Scholar 

  4. Clemente TE, Robertson D, Isleib TG, Beute MK, Weissinger AK (1992) Evaluation of peanut (Arachis hypogaea L.) leaflets from mature zygotic embryos as recipient tissue for biolistic gene transfer. Transgenic Res 1:275–284

    Article  CAS  Google Scholar 

  5. Daniel S (2002) Development of transgenic plants of groundnut for induced resistance groundnut rosette disease. Ph.D. thesis, Jawaharlal Nehru Technological University (JNTU), Hyderabad, pp 118

  6. Dietzgen RG, Mitter N, Higgins CM, Hall R, Teycheney PY, Cruinkshank A, Hapsoro D, Suderson O (2004) Harnessing RNA silencing to protect peanuts from stripe disease. In: New directions for a diverse planet. Proceedings of fourth international crop science congress. 26 Sept–1 Oct 2004, Brisbane

  7. Dwivedi SL, Nigam SN, Reddy DVR, Reddy AS, Ranga Rao GV (1995) Progress in breeding groundnut varieties resistant to bud necrosis virus and its vector. In: Buiel AAM, Parlevliet JE, Lenne JM (eds) Recent studies on peanut bud necrosis disease. ICRISAT, Patanchuru, p 35

    Google Scholar 

  8. Gielen JJL, De Haan P, Kool AJ, Peters D, Van Grinsven MQJM, Goldbach RW (1991) Engineered resistance to spotted wilt virus, a negative-strand RNA virus. Biotechnology 9:1363–1367

    Article  CAS  Google Scholar 

  9. Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Sivarama Prasad L, Bhat BV, Royer M, Secundo BS, Lakshmi Narasu M, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24:513–522

    Article  PubMed  CAS  Google Scholar 

  10. Grumet R (1994) Development of virus resistant plants via genetic engineering. Plant Breed Rev 12:47–79

    Google Scholar 

  11. Higgins CM, Hall RM, Mitter N, Cruickshank A, Dietzgen RG (2004) Peanut stripe potyvirus resistance in peanut (Arachis hypogaea L.) plants carrying viral coat protein gene sequences. Transgenic Res 138:1–9

    Google Scholar 

  12. Jorgensen R, Cluster P, Que Q, English J, Napoli C (1996) Chalcone syntheses co-suppression phenotypes in Petunia flowers: comparison of sense vs. antisense constructs and simple vs. complex T-DNA sequences. Plant Mol Biol 31:957–973

    Article  PubMed  CAS  Google Scholar 

  13. Kim JW, Sun SSM, German TL (1994) Disease resistance in tobacco and tomato plants transformed with the tomato spotted wilt virus nucleocapsid gene. Plant Dis 78:615–621

    Article  CAS  Google Scholar 

  14. Kormelink R, Kitajima EW, De Haan P, Zuidema D, Peters D (1991) The nonstructural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181:459–468

    Article  PubMed  CAS  Google Scholar 

  15. Li ZJ, Jarret RL, Demski JW (1997) Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nucleocapsid gene. Transgenic Res 6:297–305

    Article  CAS  Google Scholar 

  16. Livingstone DM, Birch RG (1995) Plant regeneration and microprojectile mediated gene transfer in embryonic leaf lets of peanut (Arachis hypogaea L.). Aust J Plant Physiol 22:585–591

    Article  CAS  Google Scholar 

  17. Lokesh B, Rashmi PR, Amruta BS, Srisathiyanarayanan D, Murthy MRN, Savithri HS (2010) NSs encoded by groundnut bud necrosis virus is a bifunctional enzyme. PLoS ONE 5:e9757. doi:10.1371/journal.pone.0009757

    Article  PubMed  Google Scholar 

  18. Magbabua ZV, Wilde HD, Roberts JK, Chowdhury K, Abad J (2000) Field resistance to tomato spotted wilt virus in transgenic peanut (Arachis hypogaea L) expressing an antisense nucleocapsid gene sequence. Mol Breed 6:227–236

    Article  Google Scholar 

  19. Matzke MA, Matzke AJM (1995) How and why do plants inactive homologous (trans) genes? Plant Physiol 107:679–685

    PubMed  CAS  Google Scholar 

  20. Nwokolo E (1996) Peanut (Arachis hypogaea L.). In: Nwokolo E, Smartt J (eds) Food and feed from legumes and oilseeds. Chapman and Hall, New York, pp 49–63

    Chapter  Google Scholar 

  21. Ozias-Akins P, Schmall JA, Anderson WF, Singsit C, Clemente TE, Adang MJ, Wessinger AK (1993) Regeneration of transgenic peanut plants from stably transformed embryogenesis callus. Plant Sci 93:185–194

    Article  CAS  Google Scholar 

  22. Pang SZ, Bock JH, Gonsalves C, Slightom JL, Gonsalves D (1994) Resistance of transgenic Nicotiana benthamiana plants to tomato spotted wilt and impatiens necrotic spot topsoviruses: evidence of involvement of the N protein and the N gene RNA in resistance. Phytopathology 84:243–249

    Article  CAS  Google Scholar 

  23. Reddy AS, Prasad Rao RDVJ, Thirumala Devi K, Reddy SV, Mayo MA, Roberts I, Satyanarayana T, Subramaniam K, Reddy DVR (2002) Occurrence of Tobacco streak virus on peanut (Arachis hypogaea L.) in India. Plant Dis 86:173–178

    Article  CAS  Google Scholar 

  24. Reddy DVR (1991) Groundnut viruses and virus diseases; distribution, identification and control. Ann Rev Plant Pathol 70:665–667

    Google Scholar 

  25. Reddy DVR, Buiel AAM, Satyanarayana T, Dwivedi SL, Reddy AS, Ratna AS, Vijaya Lakshmi K, Ranga Rao GV, Naidu RA, Wightman JA (1995) Peanut bud necrosis disease: an overview. In: Buiel AAM, Parlevliet JE, Lenne JM (eds) Recent studies on peanut bud necrosis disease. Proceedings of a meeting at ICRISAT Asia Center, Patancheru, pp 3–7

  26. Reddy DVR, Ratna AS, Sudarshan MR, Poul F, Kiran Kumar I (1992) Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut (Arachis hypogaea L.) in India. Ann Appl Biol 120:279–286

    Article  Google Scholar 

  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory press, New York

    Google Scholar 

  28. Sathyanarayana T, Mitchell SE, Reddy DVR, Brown S, Kresovich S, Jarret R, Naidu RA, Demski J (1996) Peanut bud necrosis tospovirus S RNA: complete nucleotide sequence, genome organization and homologous to other tospoviruses. Arch Virol 141:85–98

    Article  Google Scholar 

  29. Schnall JA, Weissinger AK (1995) Genetic transformation in Arachis hypogaea L. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 34. Springer, Berlin

    Google Scholar 

  30. Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L) through Agrobacterium tumefaciens mediated genetic transformation. Plant Sci 159:7–19

    Article  PubMed  CAS  Google Scholar 

  31. Sharma KK, Bhatnagar-Mathur P (2006) Peanut (Arachis hypogaea L.). In: Kan W (ed) Agrobacterium protocols (methods in molecular biology) vol 44. Humana Press Inc., Totowa, pp 347–358

    Google Scholar 

  32. Stam M, Mol JN, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  33. Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M (2002) Identification of a novel RNA silencing suppressor, NSs protein of tomato spotted wilt virus. FEBS Lett 532:75–79

    Article  PubMed  CAS  Google Scholar 

  34. Vaira AM, Semeria L, Crespi S, Lisa V, Allavena A, Accotto GP (1995) Resistance to topsoviruses in Nicotiana benthamiana transformed with the N gene of tomato spotted wilt virus: correlation between transgene expression and protection in primary transformants. Mol Plant Microbe Interact 8:56–73

    Article  Google Scholar 

  35. Vaughan GMT, Pither-Joyce MD, Cooper PA, Russel AC, Goulden DS, Butter R, Grant JE (2001) Partial resistance of transgenic pea to Alfa Alfa Mosaic Virus under green house and field conditions. Crop Sci 41:846–853

    Article  Google Scholar 

  36. Venkatachalam P, Geeta N, Khandelwal A, Shaila MS, Lakshmi Sita G (2000) Agrobacterium—mediated genetic transformation and regeneration of transgenic plants from cotyledon explants of groundnut (Arachis hypogaea L.) via somatic embryogenesis. Curr Sci 78:1130–1136

    CAS  Google Scholar 

  37. Venkatesan S, Raja JAJ, Maruthasalam S, Kumar KK, Ramanathan A, Sudhakar D, Balasubramanian P (2009) Transgenic resistance by N gene of a Peanut bud necrosis virus isolate of characteristic phylogeny. Virus Genes 38:445–454

    Article  PubMed  CAS  Google Scholar 

  38. Wightman JA, Ranga Rao GV, Vijaya Lakshmi K (1995) Thrips palmi, general pest and vector of some tospoviruses in Asia. In: Buiel AAM, Parlevliet JE, Lenne JM (eds) Recent studies on peanut bud necrosis disease. ICRISAT, Patancheru, p 35

    Google Scholar 

  39. Yang H, Ozias-Akins P, Culbreath AK, Gorbet DW, Weeks JR, Amndal B, Pappu HR (2004) Field evaluation of Tomato spotted wilt virus resistance in transgenic peanut (Arachis hypogaea L.). Plant Dis 88:259–264

    Article  Google Scholar 

Download references

Acknowledgments

We thank T. Swami Krishna, D. Pandary, Md. Yousuf, and C. Lakshminarayana for excellent technical assistance during this study. SCR would like to thank the Jawaharlal Nehru Technological University, Hyderabad, for providing an opportunity to register for the Ph.D. program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran K. Sharma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, S.C., Bhatnagar-Mathur, P., Kumar, P.L. et al. Pathogen-derived resistance using a viral nucleocapsid gene confers only partial non-durable protection in peanut against peanut bud necrosis virus. Arch Virol 158, 133–143 (2013). https://doi.org/10.1007/s00705-012-1483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1483-8

Keywords

Navigation