Skip to main content

Advertisement

Log in

Local climate regionalization of the Tibetan Plateau: A data-driven scale-dependent analysis

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The Tibetan Plateau (TP) has experienced an overall rapid warming and moistening; however, the knowledge of TP climate regionalization and of its spatial-temporal variations is far behind the rapid climate change and subsequent environmental responses. To address the threats of frequent compound processes, like heatwaves or flash droughts, we analyze the interaction of atmospheric processes and climate subsystems, propose a novel data-driven climate diagnostics approach, and generate a time series of multi-scale local climate zonings, which characterize the spatial-temporal variations of TP climate and provides an in-depth understanding of TP climate change from 1979 to 2018. The interpretation of this data driven approach is supported by Holdridge’s life-zones, Budyko’s physical framework of geobotanical biomes driven by the surface fluxes of water supply (precipitation) and water demand (net radiation), and the Köppen phenomenological climate classification. Three different local climate patterns are identified: (i) The main driver of local climate change in the Qiangtang area (central-western TP) is shifting from water supply to demand dominance. (ii) In the Qaidam area (north-eastern TP), the humid region expands accompanied with a contracting arid region; this trend of warming and moistening expands from the east westwards. (iii) Hengduan Mountains area (south-eastern TP) becomes warmer and wetter but with frequent local climate variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The dataset of TP decadal multi-scale local climate regionalization generated by this study is available at [https://github.com/yuningf/TP_LocalClimateRegionalization]. The climate data used in this study is from China Meteorological Forcing Dataset (CMFD) (He et al. 2020) and the spatial constraint data of landform units are provided by Geomorphological Database of the People’s Republic of China (Cheng et al. 2011). The calculation of merge control parameter is realized by the ESP (estimation scale parameter) tool (Drǎguţ et al. 2010) and other methods are realized by eCognition software available at [https://cn.geospatial.trimble.com/products-and-solutions/trimble-ecognition]. Corresponding codes are available at [https://github.com/yuningf/Codes_LocalClimateRegionalization].

References

  • Ayoade JO (1977) On the use of multivariate techniques in climatic classification and regionalization. Archiv für Meteorologie Geophysik Und Bioklimatologie Serie B 24:257–267

    Article  ADS  Google Scholar 

  • Baatz M, Schäpe A (2000) In: Strobl J et al (eds) Multiresolution segmentation—An optimization approach for high quality multi–scale image segmentation. Angewandte Geographische Informationsverarbeitung XII. Wichmann, Heidelberg, pp 12–23

    Google Scholar 

  • Baker B, Diaz H, Hargrove W et al (2010) Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the people’s Republic of China. Clim Change 98:113

    Article  ADS  Google Scholar 

  • Budyko MI (1974) Climate and life. Academic, New York, p 508

    Google Scholar 

  • Cai D, You Q, Fraedrich K, Guan Y (2017) Spatiotemporal temperature variability over the Tibetan Plateau: altitudinal dependence associated with the global warming hiatus. J Clim 30(3):696–684

    Article  Google Scholar 

  • Cai D, Fraedrich K, Guan Y, Guo S, Zhang C, Zhu X (2019) Urbanization and climate change: insights from eco-hydrological diagnostics. Sci Total Environ (STOTEN) 647:29–36

    Article  ADS  CAS  Google Scholar 

  • Cai D, Fraedrich K, Sielmann F, Zhu S, Yu L (2023) Attribution and causality analyses of regional climate variability. Land 12:817

    Article  Google Scholar 

  • Cheng W, Zhou C, Chai H, Zhao S, Liu H, Zhou Z (2011) Research and compilation of the geomorphologic atlas of the people’s Republic of China (1:1,000,000). J Geog Sci 21(1):89–100. https://doi.org/10.1007/s11442-011-0831-z

    Article  Google Scholar 

  • Cheng W, Zhou C, Li B, Shen Y (2019) Geomorphological regionalization theory system and division methodology of China. Acta Geogr Sin 74(5):839–856

    Google Scholar 

  • Di Giuseppe E, Jona Lasinio G, Esposito S et al (2013) Functional clustering for Italian climate zones identification. Theoret Appl Climatol 114:39–54

    Article  ADS  Google Scholar 

  • Dong C, Wang X, Ran Y, Nawaz Z (2022) Heatwaves significantly slow the Vegetation Growth Rate on the Tibetan Plateau. Remote Sens 14:2402

    Article  ADS  Google Scholar 

  • Drǎguţ L, Tiede D, Levick SR (2010) ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int J Geographical Inform 24(6):859–871. https://doi.org/10.1080/13658810903174803

    Article  Google Scholar 

  • Fang X, Li Z, Cheng C, Fraedrich K, Lyu S (2023a) Changes of timing and duration of the near-surface ground surface freeze on the Tibetan Plateau in the highly wetting period from 1998 to 2005. Clim Change, 176

  • Fang X, Li Z, Cheng C, Fraedrich K, Wang A, Chen Y, Xu Y, Lyu S (2023b) Response of freezing/thawing indexes to the wetting trend under warming climate conditions over the Qinghai –Tibetan Plateau during 1961–2010: a Numerical Simulation. Adv Atmonpheric Sci 40(2):211–222

    Article  ADS  Google Scholar 

  • Feng W, Lu H, Yao T et al (2020) Drought characteristics and its elevation dependence in the Qinghai–Tibet plateau during the last half-century. Sci Rep 10:14323

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng Y, Du S, Fraedrich K, Zhang X (2022) Fine-grained climate classification for the Qaidam Basin. Atmosphere 13:913

    Article  ADS  Google Scholar 

  • Fraedrich K, Gerstengarbe FW, Werner PC (2001) Climate shifts during the last century. Clim Change 50(4):405–417

    Article  Google Scholar 

  • Geng Q, Wu P, Zhang Q, Zhao X, Wang Y (2014) Dry/wet climate zoning and delimitation of arid areas of northwest China based on a data–driven fashion. J Arid Land 6:287–299

    Article  Google Scholar 

  • Gerstengarbe FW, Werner PC, Fraedrich K (1999) Applying non-hierarchical cluster analysis algorithms to climate classification: some problems and their solution. Theoret Appl Climatol 64:143–150

    Article  ADS  Google Scholar 

  • Gordon LJ, Steffen W, Jönsson BF, Folke C, Falkenmark M, Johannessen A (2005) Human modification of global water vapor flows from the land surface. Proc Natl Acad Sci USA 102:7612–7617

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamada S, Badr., Zaitchik BF, Dezfuli AK (2015) A tool for hierarchical climate regionalization. Earth Sci Inf 8(4):949–958

    Article  Google Scholar 

  • Hargrove W, Hoffman F (2004) Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ Manage 34(1 Supplement):S39–S60

    Article  PubMed  Google Scholar 

  • He J, Yang K, Tang W, Lu H, Qin J, Chen Y (2020) The first high–resolution meteorological forcing dataset for land process studies over China. Sci Data 7:1–11. https://doi.org/10.1038/s41597-020-0369-y

    Article  Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose, Costa Rica

    Google Scholar 

  • Holland HD (1978) The Chemistry of the atmosphere and oceans. Wiley, New York, NY, USA

    Google Scholar 

  • Huang S, Yu L, Cai D, Zhu J, Liu Z, Zhang Z, Nie Y, Fraedrich K (2023) Driving mechanisms of urbanization: evidence from geographical, climatic, social economic and night-time light data. Ecol Ind 148:110046

    Article  Google Scholar 

  • Immerzeel W, Beek L, Bierkens M (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385

    Article  ADS  PubMed  CAS  Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.–K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp

  • Joliffe IT (1986) Principal Component Analysis.Springer–Verlag, 271pp

  • Köppen W (1931) Grundriss Der Klimakunde, 388pp edn. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Kostopoulou E, Jones P (2007) Comprehensive analysis of the climate variability in the eastern Mediterranean. Part I: map–pattern classification. Int J Climatol 27(9):1189–1214

    Article  Google Scholar 

  • Kraaijenbrink PDA, Stigter EE, Yao T et al (2021) Climate change decisive for Asia’s snow meltwater supply. Nat Clim Change 11:591–597

    Article  ADS  Google Scholar 

  • Li L, Li H, Shen H, Liu C, Ma Y, Zhao Y (2018) The truth and inter–annual oscillation causes for climate change in the Qinghai–Tibet Plateau. J Glaciology Geocryology 40(6):1079–1089

    Google Scholar 

  • Lin Z, Wu X (1981) Climatic regionalization of the Qinghai–Xizang Plateau. Acta Geogr Sin 48(1):22–32

    ADS  MathSciNet  Google Scholar 

  • Ma Y, Hu Z, Tian L, Zhang F, Duan A, Yang K, Zhang YL, Yang Y (2014) Study process of the Tibet Plateau Climate System Change and mechanism of its impact on East Asia. Adv Earth Sci 29:207–215

    Google Scholar 

  • Monserud RA, Leemans R (1992) The comparison of global vegetation maps. Ecol Model 62:275–293

    Article  Google Scholar 

  • Myers N, Mittermeier R, Mittermeier C et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  ADS  PubMed  CAS  Google Scholar 

  • Netzel P, Stepinski T (2006) On using a clustering approach for global climate classification. J Clim 29(9):3387–3401

    Article  ADS  Google Scholar 

  • Pan B, Li J (1996) Qinghai–Tibetan Plateau: a driver and amplifier of the global climatic change. J Lanzhou Univ (Natural Sciences) 32(1):108–115

    Google Scholar 

  • Pepin N, Lundquist J (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35(14):L14701

    Article  ADS  Google Scholar 

  • Rodionov A, Flessa H, Grabe M, Kazansky O, Shibistova O et al (2007) Organic carbon and total nitrogen variability in permafrost–affected soils in a forest tundra ecotone. Eur J Soil Sci 58:1260–1272

    Article  CAS  Google Scholar 

  • Rumpel C, Crème A, Ngo P, Velásquez G, Mora M, Chabbi A (2015) The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. J Soil Sci Plant Nutr 15:353–371

    Google Scholar 

  • Shi J, Yang L (2020) A climate classification of China through k–Nearest–neighbor and sparse subspace representation. J Clim 33(1):243–262

    Article  ADS  Google Scholar 

  • Shi PJ, Sun S, Wang M et al (2014) Climate change regionalization in China (1961–2010). Sci China (Earth Sciences) 57(011):2676–2689

    Article  ADS  CAS  Google Scholar 

  • Sonmez I, Koemuescue AU (2011) Reclassification of rainfall regions of Turkey by k–means methodology and their temporal variability in relation to north atlantic oscillation (NAO). Theoret Appl Climatol 106:499–510

    Article  ADS  Google Scholar 

  • Unal Y, Kindap T, Karaca M (2003) Redefining the climate zones of Turkey using cluster analysis. Int J Climatol 23(9):1045–1055

    Article  Google Scholar 

  • Wang B et al (2008) Tibetan Plateau warming and precipitation change in East Asia. Geophys Res Lett 35:L14702

    Article  ADS  Google Scholar 

  • Wen L, Dong S, Li Y, Li X, Shi J, Wang Y et al (2013) Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai–Tibetan plateau, China. PLoS ONE, 8(3), e58432

  • Wills R, Schneider T (2013) The role of Topography in Local Climate Change. Geophys Res Abstracts 15:EGU2013–3649

    Google Scholar 

  • Wu SH, Yin Y, Zheng D, Yang Q (2005) Climate changes in the Tibetan Plateau during the last three decades. Acta Geogr Sin 60(1):3–11

    Google Scholar 

  • Wu S, Yin Y, Zheng D, Yang Q, Deng H (2016) Advances in terrestrial system research in China. J Geog Sci 26(7):791–802

    Article  Google Scholar 

  • Xu Z, Gong T, Li J (2008) Decadal trend of climate in the tibetan plateau–regional temperature and precipitation. Hydrol Process 22(16):3056–3065

    Article  ADS  Google Scholar 

  • Yang K, Ye B, Zhou D, Wu B, Foken T, Qin J, Zhou Z (2011) Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim Change 109:517–534

    Article  ADS  Google Scholar 

  • Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Change 112:79–91

    Article  ADS  Google Scholar 

  • Yao T, Xue Y, Chen D, Chen F, Thompson L, Cui P et al (2019) Recent third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multi–disciplinary approach with observation, modeling and analysis. Bull Am Meteorol Soc 100(3):423–444

    Article  ADS  Google Scholar 

  • Yao T, Bolch T, Chen D et al (2022) The imbalance of the Asian water tower. Nat Reviews Earth Environ 3:618–632

    Article  ADS  Google Scholar 

  • Yu M, Guo S, Guan Y, Cai D, Zhang C, Fraedrich K, Liao Z, Zhang X, Tian Z (2021) Spatiotemporal heterogeneity analysis of Yangtze River Delta urban agglomeration: evidence from nighttime light data (2001 to 2019). Remote Sens 13:1235

    Article  ADS  Google Scholar 

  • Zhang X, Yan X (2014) Temporal change of climate zones in China in the context of climate warming. Theoret Appl Climatol 115(1–2):167–175

    Article  ADS  Google Scholar 

  • Zhang F, Lei Y, Yu Q, Fraedrich K, Iwabuchi H (2017) Causality of the drought in the southwestern United States based on observations. J Clim 30:4891–4896

    Article  ADS  Google Scholar 

  • Zhao S (2011) Digital Geomorphologic Analysis and Process Simulation in the Qinghai-Tibet Plateau. Doctoral Thesis, Chinese Academy of Sciences, China

  • Zheng JY, Yin YH, Li BY (2010) A new scheme for climate regionalization in China. Acta Geogr Sin 65(1):3–12

    ADS  Google Scholar 

Download references

Acknowledgements

The authors appreciate a reviewer’s insightful comments and the Editor in Chief for his careful handling of the editorial process.

Funding

The work was supported by Youth Research and Innovation Project – Young teachers research ability enhancement program (X23002), National Natural Science Foundation of China (41930650) and National Key Research and Development Program of China (2021YFE0117100).

Author information

Authors and Affiliations

Authors

Contributions

Yuning Feng, Shihong Du, Klaus Fraedrich and Xiuyuan Zhang contributed to the study conception and design. Material preparation and data collection were performed by Yuning Feng, Weiming Cheng and Mingyi Du. Analysis and investigation were performed by Yuning Feng, Klaus Fraedrich, Xiuyuan Zhang and Weiming Cheng. The first draft of the manuscript was written by Yuning Feng and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shihong Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Du, S., Fraedrich, K. et al. Local climate regionalization of the Tibetan Plateau: A data-driven scale-dependent analysis. Theor Appl Climatol (2024). https://doi.org/10.1007/s00704-024-04916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00704-024-04916-8

Navigation