Skip to main content

Advertisement

Log in

Spatial distribution of soil moisture index across Nepal: a step towards sharing climatic information for agricultural sector

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The agro-climatic zoning provides valuable information for crop suitability mapping in order to optimize the yield. Despite its huge importance, such studies are extremely lacking in Nepal. This study attempts to classify the agro-climates of Nepal using a climate data of recent 30 years (1986–2015) period from a large number of meteorological stations distributed across the country (75 stations for the first time). Climate data at station location is interpolated in high spatial resolution considering elevation as one of the dominant factors controlling the spatial variability of climate fields in mountains. The agro-climatic classification includes modified Thornthwaite’s approach based on soil moisture index (SMI). The negative SMI values represent dry and arid whereas positive values represent the wet and humid environment. SMI > 100% represents perhumid agro-climate. Our results show the largely similar distribution of annual and monsoonal SMI, suggesting the dominance of monsoon SMI on annual. Based on the annual SMI indices, around 60% of areal coverage of the country falls under humid environment. The presented seasonal and spatial distribution maps of SMI can be helpful to assess the needs of the irrigational facility, choice of crops, and their rotations, and finally to design cropping calendar. The practitioners, researchers, and decision/policymakers can benefit from these tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aalto J, Pirinen P, Heikkinen J, Venäläinen A (2013) Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models. Theor Appl Climatol 112(1):99–111. https://doi.org/10.1007/s00704-012-0716-9

    Article  Google Scholar 

  • Aparecido LE d O, Rolim G d S, Richetti J, de Souza PS, Johann JA (2016) Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the State of Paraná, Brazil. Ciênc Agrotecnol 40(4):405–417. https://doi.org/10.1590/1413-70542016404003916

    Article  Google Scholar 

  • Basalirwa CPK (1995) Delineation of Uganda into climatological rainfall zones using the method of principal component analysis. Int J Climatol John Wiley & Sons, Ltd. 15(10):1161–1177. https://doi.org/10.1002/joc.3370151008

    Article  Google Scholar 

  • Camargo AP (1991) Classificação climática para zoneamento de aptidão agroclimática. Rev Bras Agrometeorol 8:126–131

    Google Scholar 

  • DHM/GoN (2013) Agro-climatic atlas of Nepal. Department of Hydrology and Meteorology, Kathmandu

    Google Scholar 

  • DHM/GoN (2015) Study of Climate and climatic variation over Nepal. Department of Hydrology and Meteorology, Kathmandu

    Google Scholar 

  • Feddema JJ (1994) Evaluation of terrestrial climate variability using a moisture index. Publications in climatology. Charles Warren Thornthwaite Associates, Laboratory of Climatology XLVII(1)

  • Feddema JJ (2005) A revised Thornthwaite-type global climate classification. Phys Geogr 26(6):442–466. https://doi.org/10.2747/0272-3646.26.6.442

    Article  Google Scholar 

  • Flohn H (1950) Neue Anschauungen über die allgemeine zirkulation der atmosphareund ihre klimatische bedeutung. Erdkunde 4(141–162)

  • Forsythe N, Blenkinsop S, Fowler HJ (2015) Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources. Earth Syst Dyn 6(1):311–326. https://doi.org/10.5194/esd-6-311-2015

    Article  Google Scholar 

  • Geiger R (1954) Klassifikation der klimate nach W. Köppen. In: Bartels J and Bruggencate P (eds) Landolt- Börnstein – Zahlenwerte und Funktionen aus physik, chemie, astronomie, Geophysik und Technik, Alte Serie 3:603–607

  • Gnanadesikan A, Stouffer RJ (2006) Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Ko ¨ ppen climate classification. Geophys Res Lett 33:1–5. https://doi.org/10.1029/2006GL028098

    Article  Google Scholar 

  • Grundstein A (2009) Evaluation of climate change over the continental United States using a moisture index. Climate Change 93:103–115. https://doi.org/10.1007/s10584-008-9480-3

    Article  Google Scholar 

  • Gumma MK, Gauchan D, Nelson A, Pandey S, Rala A, Asia S (2011) Agriculture , ecosystems and environment temporal changes in rice-growing area and their impact on livelihood over a decade: a case study of Nepal Far-Western. Agriculture, Ecosystems and Environment.” Elsevier B.V. 142(3–4):382–392. https://doi.org/10.1016/j.agee.2011.06.010

    Article  Google Scholar 

  • Guofeng ZHU, Dahe QIN, Huali T, Yuanfeng LIU, Jiafang LI, Dongdong C, Kai W (2016) Variation of Thornthwaite moisture index in Hengduan Mountains, China. Chin Geogr Sci 26(5):687–702. https://doi.org/10.1007/s11769-016-0820-3

    Article  Google Scholar 

  • HMG (1975) Mechidekhi Mahakali (I-IV Volumes). Department of Information, Ministry of Communication

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose

    Google Scholar 

  • Høst G (1999) Kriging by local polynomials. Comput Stat Data Anal 29(3):295–312

    Article  Google Scholar 

  • Huke RE (1982) Agroclimatic and dry-season maps of South, Southeast, and East Asia. Manila, Philippines

  • ICIMOD (1996) Climatic and hydrological atlas of Nepal. Kathmandu, Nepal

  • Jha S, Karn A (2001) Climatic analogues for the administrative districts of Nepal. Tribhuvan Univ J 55–64

  • Karki R, Talchabhadel R, Aalto J, Baidya SK (2016) New climatic classification of Nepal. Theor Appl Climatol 125(3–4):799–808. https://doi.org/10.1007/s00704-015-1549-0

    Article  Google Scholar 

  • Karki R, Hasson S, Schickhoff U, Scholten T (2017) Rising precipitation extremes across Nepal. Climate 5(4):1–25. https://doi.org/10.3390/cli5010004

    Google Scholar 

  • Köppen W (1900) Versuch einer Klassifikation der Klimate, Vorzugsweise nach ihren Beziehungen zur Pflanzenwelt [Attempted climate classification in relation to plant distributions]. Geogr Z 6(593–611):657–679

    Google Scholar 

  • Köppen W (1918) Klassifikation der Klimate nach Temperatur, Niederschlag und Jahresablauf (classification of climates according to temperature, precipitation and seasonal cycle). Petermanns Geogr Mitt 64(193–203):243–248

    Google Scholar 

  • Köppen W (1936) Das geographische System der Klimate. Handb Klimatol (c):7–30. https://doi.org/10.3354/cr01204

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Kyuma K (1971) Climate of south and Southeast Asia according to Thornthwaite’s classification scheme. Southeast Asian Stud 9(1):136–158

    Google Scholar 

  • Li J, Sun X (2015) Valuation of changes of Thornthwaite moisture index in Victoria. Aust Geomech 50(3):39–49

    Google Scholar 

  • Nayava JL (1975) Climates of Nepal. Himal Rev VII:9–12

    Google Scholar 

  • Nayava JL (1980) Rainfall in Nepal. The Himalayan Review. Nepal Geological Society 12

  • Papadakis J (1975) Climates of the world and their agricultural potentialities. Eigenverl. D. Verf

  • Practical Action Nepal (2009) Temporal and Spatial Variabilty of Climate Change Over Nepal (1976–-2005). Practical Action Nepal, Kathmandu

    Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reddy SJ, Reddy RS (1973) A new method of estimation of water balance. International Symposium On tropical Meteoroligical Meeting. American Meteorological Society, Nairobi, pp 277–280

    Google Scholar 

  • Roohi R, Ahmad S, Ashraf A (2002) Characterization and classification of agro-climates of Pakistan. Pak J Agric Res 245–254

  • Shrestha ML (2000) Interannual variation of summer monsoon rainfall over Nepal and its relation to southern oscillation index. Meteorog Atmos Phys 75:21–28. https://doi.org/10.1007/s007030070012

    Article  Google Scholar 

  • Stern H, DeHoedt G (1999) Objective classification of Australian climates. 8th Conf. on Aviation, Range and Aerospace Meteorology. American Meteological Society, Dallas, pp 87–91

    Google Scholar 

  • Sun X (2015) The impact of climate as expressed by Thornthwaite moisture index on residential footing design on expansive soil in Australia. RMIT University

  • Talchabhadel R, Karki R, Parajuli B (2017) Intercomparison of precipitation measured between automatic and manual precipitation gauge in Nepal. Measurement 106:264–273. https://doi.org/10.1016/j.measurement.2016.06.047

    Article  Google Scholar 

  • Talchabhadel R, Karki R, Thapa BR, Maharjan M, Parajuli B (2018) Spatio-temporal variability of extreme precipitation in Nepal. Int J Climatol 38:4296–4313. https://doi.org/10.1002/joc.5669

    Article  Google Scholar 

  • Thornthwaite CW (1931) The climates of North America according to a new classification. Geogr Rev XXXI:633–655

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94. https://doi.org/10.2307/210739

    Article  Google Scholar 

  • Wang X, Feng Y (2010) RHtestsV3 UserManual, Climate Research Division, Atmospheric Science and Technology Directorate Science and Technology Branch. Environment Canada

  • Zaman QU, Rasul G (2004) Agro-climatic classification of Pakistan. Q Sci Vis 9(1974):59–66

    Google Scholar 

  • Zhang X, Yang F (2004) RClimDex (1.0) User Manual, Climate Research Branch. Environment Canada

Download references

Acknowledgements

The authors would like to thank the DHM, Government of Nepal, for the permission to use meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocky Talchabhadel.

Ethics declarations

Conflicts of interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talchabhadel, R., Karki, R., Yadav, M. et al. Spatial distribution of soil moisture index across Nepal: a step towards sharing climatic information for agricultural sector. Theor Appl Climatol 137, 3089–3102 (2019). https://doi.org/10.1007/s00704-019-02801-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-019-02801-3

Navigation