Skip to main content

Advertisement

Log in

Land surface temperature shaped by urban fractions in megacity region

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Large areas of cropland and natural vegetation have been replaced by impervious surfaces during the recent rapid urbanization in China, which has resulted in intensified urban heat island effects and modified local or regional warming trends. However, it is unclear how urban expansion contributes to local temperature change. In this study, we investigated the relationship between land surface temperature (LST) change and the increase of urban land signals. The megacity of Tianjin was chosen for the case study because it is representative of the urbanization process in northern China. A combined analysis of LST and urban land information was conducted based on an urban–rural transect derived from Landsat 8 Thermal Infrared Sensor (TIRS), Terra Moderate Resolution Imaging Spectrometer (MODIS), and QuickBird images. The results indicated that the density of urban land signals has intensified within a 1-km2 grid in the urban center with an impervious land fraction >60 %. However, the construction on urban land is quite different with low-/mid-rise buildings outnumbering high-rise buildings in the urban–rural transect. Based on a statistical moving window analysis, positive correlation (R 2 > 0.9) is found between LST and urban land signals. Surface temperature change (ΔLST) increases by 0.062 °C, which was probably caused by the 1 % increase of urbanized land (ΔIF) in this case region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akbari H, Menon S, Rosenfeld A (2009) Global cooling: increasing world-wide urban albedos to offset CO2. Clim Chang 94:275–286. doi:10.1007/s10584-008-9515-9

    Article  Google Scholar 

  • Alchapar NL, Correa EN, Canton MA (2014) Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones. Energy Build 69:22–32. doi:10.1016/j.enbuild.2013.10.012

    Article  Google Scholar 

  • An XQ, Hou Q, Li N, Zhai SX (2013) Assessment of human exposure level to PM10 in China. Atmos Environ 70:376–386. doi:10.1016/j.atmosenv.2013.01.017

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23(1):1–26. doi:10.1002/joc.859

    Article  Google Scholar 

  • Bhang KJ, Park SS (2009) Evaluation of the surface temperature variation with surface settings on the urban heat island in Seoul, Korea, using Landsat-7 ETM+ and SPOT. IEEE Geosci Remote Sens Lett 6(4):708–712. doi:10.1109/Lgrs.2009.2023825

    Article  Google Scholar 

  • Bretz S, Akbari H, Rosenfeld A (1998) Practical issues for using solar-reflective materials to mitigate urban heat islands. Atmos Environ 32(1):95–101

    Article  Google Scholar 

  • Du Y, Xie ZQ, Zeng Y, Shi YF, Wu JG (2007) Impact of urban expansion on regional temperature change in the Yangtze River Delta. J Geogr Sci 17(4):387–398. doi:10.1007/s11442-007-0387-0

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T (2013) Examining urban heat island relations to land use and air pollution: multiple endmember spectral mixture analysis for thermal remote sensing. IEEE J-Stars, 6(3), 1939–1404, doi: 10.1109/Jstars.2013.2263425

  • He YT, Jia GS, Hu YH, Zhou ZJ (2013) Detecting urban warming signals in climate records. Adv Atmos Sci 30(4):1143–1153. doi:10.1007/s00376-012-2135-3

    Article  Google Scholar 

  • Heusinkveld BG, Steeneveld GJ, van Hove LWA, Jacobs CMJ, Holtslag AAM (2014) Spatial variability of the Rotterdam urban heat island as influenced by urban land use. J Geophys Res Atmos 119(2):677–692. doi:10.1002/2012jd019399

    Article  Google Scholar 

  • Holderness T, Barr S, Dawson R, Hall J (2013) An evaluation of thermal earth observation for characterizing urban heatwave event dynamics using the urban heat island intensity metric. Int J Remote Sens 34(3):864–884. doi:10.1080/01431161.2012.714505

    Article  Google Scholar 

  • Hu YH, Jia GS (2009) Influence of land use change on urban heat island derived from multi-sensor data. Int J Climatol 30:1382–1395. doi:10.1002/joc.1984

    Google Scholar 

  • Hu YC, Dong WJ, He Y (2010) Impact of land surface forcings on mean and extreme temperature in eastern China. J Geophys Res-Atmos 115, doi: 10.1029/2009jd013368

  • Jacobson MZ, Ten Hoeve JE (2012) Effects of urban surfaces and white roofs on global and regional climate. J Clim 25(3):1028–1044. doi:10.1175/JCLI-D-11-00032.1

    Article  Google Scholar 

  • Jin M, Shepherd JM (2005) Inclusion of urban landscape in a climate model—how can satellite data help? Bull Am Meteorol Soc 86:681–689. doi:10.1175/BAMS-86-5-681

    Article  Google Scholar 

  • Keramitsoglou I, Kiranoudis CT, Ceriola G, Weng QH, Rajasekar U (2011) Identification and analysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sens Environ 115:3080–3090. doi:10.1016/j.rse.2011.06.014

    Article  Google Scholar 

  • Kim KH, Jahan SA, Kabir E (2013) A review on human health perspective of air pollution with respect to allergies and asthma. Environ Int 59:41–52. doi:10.1016/j.envint.2013.05.007

    Article  Google Scholar 

  • Kondo A, Ueno M, Kaga A, Yamaguchi K (2001) The influence of urban canopy configuration on urban albedo. Bound-Layer Meteorol 100:225–242

    Article  Google Scholar 

  • Lazzarini M, Marpu PR, Ghedira H (2013) Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sens Environ 130:136–152. doi:10.1016/j.rse.2012.11.007

    Article  Google Scholar 

  • Lee T, Kim T (2013) Automatic building height extraction by volumetric shadow analysis of monoscopic imagery. Int J Remote Sens 34:5834–5850. doi:10.1080/01431161.2013.796434

    Article  Google Scholar 

  • Li JJ, Wang XR, Wangand XJ, Ma WC, Zhang H (2009) Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecol Complex 6(4):413–420. doi:10.1016/j.ecocom.2009.02.002

    Article  Google Scholar 

  • Nicholls N (2003) Continued anomalous warming in Australia. Geophys Res Lett 30(7)

  • Peng S, Piao S, Ciais P, Friedlingstein P, Ottle C, Breon FM, Nan H, Zhou L, Myneni RB (2012) Surface urban heat island across 419 global big cities. Environ Sci Technol 46(2):696–703. doi:10.1021/es2030438

    Article  Google Scholar 

  • Rosenfeld AH, Akbari H, Bretz SE et al (1995) Mitigation of urban heat islands: materials, utility programs, updates. Energy Build 22(3):255–265

    Article  Google Scholar 

  • Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, Scambos TA, Schaaf CB, Schott JR, Sheng Y, Vermote EF, Belward AS, Bindschadler R, Cohen WB, Gao F, Hipple JD, Hostert P, Huntington J, Justice CO, Kilic A, Kovalskyy V, Lee ZP, Lymburner L, Masek JG, McCorkel J, Shuai Y, Trezza R, Vogelmann J, Wynne RH, Zhu Z (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172. doi:10.1016/j.rse.2014.02.001

    Article  Google Scholar 

  • Rozenstein O, Qin ZH, Derimian Y, Karnieli A (2014) Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors 14:5768–5780. doi:10.3390/s140405768

    Article  Google Scholar 

  • Sailor DJ (1995) Simulated urban climate response to modifications in surface albedo and vegetative cover. J Appl Meteorol 34(7):1694–1704

    Article  Google Scholar 

  • Sarrat C, Lemonsu A, Masson V, Guedalia D (2006) Impact of urban heat island on regional atmospheric pollution. Atmos Environ 40(10):1743–1758. doi:10.1016/j.atmosenv.2005.11.037

    Article  Google Scholar 

  • Sobrino JA, Jiménez-Muñoz JC, Sòria G, Romaguera M, Guanter L, Moreno J, Plaza A, Martínez P (2008) Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE T Geosci Remote 46(2):316–327. doi:10.1109/TGRS.2007.904834

  • Stathopoulou M, Cartalis C (2009) Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sens Environ 113(12):2592–2605. doi:10.1016/j.rse.2009.07.017

    Article  Google Scholar 

  • Su YF, Foody GM, Cheng KS (2012) Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations. Landsc Urban Plan 107(2):172–180. doi:10.1016/j.landurbplan.2012.05.016

    Article  Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384. doi:10.1016/S0034-4257(03)00079-8

    Article  Google Scholar 

  • Wan ZM (2008) New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens Environ 112(1):59–74. doi:10.1016/j.rse.2006.06.026

    Article  Google Scholar 

  • Wang F, Qin ZH, Song CY, Tu LL, Karnieli A, Zhao SH (2015) An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sens 7:4268–4289. doi:10.3390/rs70404268

    Article  Google Scholar 

  • Weng Q (2002) Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling. J Environ Manag 64(3):273–284

    Article  Google Scholar 

  • Weng QH (2009) Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS J Photogramm Remote Sens 64(4):335–344. doi:10.1016/j.isprsjprs.2009.03.007

    Article  Google Scholar 

  • Weng QH, Lu DS, Schubring J (2004) Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483. doi:10.1016/j.rse.2003.11.005

    Article  Google Scholar 

  • Wu K, Yang XQ (2013) Urbanization and heterogeneous surface warming in eastern China. Chin Sci Bull 58:1363–1373

    Article  Google Scholar 

  • Yang X, Hou Y, Chen B (2011) Observed surface warming induced by urbanization in east China. J Geophys Res-Atmos 116

  • Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106(3):375–386. doi:10.1016/j.rse.2006.09.003

    Article  Google Scholar 

  • Zhang Z, Wang X, Zhao X, Liu B, Yi L, Zuo L, Wen Q, Liu F, Xu J, Hu S (2014) A 2010 update of National Land Use/Cover Database of China at 1:100000 scale using medium spatial resolution satellite images. Remote Sens Environ 149:142–154. doi:10.1016/j.rse.2014.04.004

    Article  Google Scholar 

  • Zhou WQ, Qian YG, Li XM, Li WF, Han LJ (2014) Relationships between land cover and the surface urban heat island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landsc Ecol 29(1):153–167. doi:10.1007/s10980-013-9950-5

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by CAS Strategic Research Program (XDA05090203), National Natural Science Foundation of China (41405064, 41201044), “One-Three-Five” Strategic Planning by the Institute of Remote Sensing and Digital Earth, CAS (Y4SG0500CX), and China Meteorological Administration Special Public Welfare Research Fund (GYHY201406020). We thank the Institute of Remote Sensing and Digital Earth (RADI) for providing Landsat 8 (http://ids.ceode.ac.cn/query.html) and QuickBird images (http://cs.rsgs.ac.cn/cs_en/cshome.asp).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hu, Y., Jia, G. et al. Land surface temperature shaped by urban fractions in megacity region. Theor Appl Climatol 127, 965–975 (2017). https://doi.org/10.1007/s00704-015-1683-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1683-8

Keywords

Navigation