Skip to main content
Log in

Seasonal characteristics of the large-scale moisture flux transport over the Arabian Peninsula

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The relationship between the lower tropospheric (1000 to 850 hPa) large-scale moisture flux transport and the precipitation over the Arabian Peninsula (AP), on a seasonal basis, using the NCEP–NCAR gridded dataset for the 53-year period (1958–2010), is investigated. The lower tropospheric moisture flux divergence occurs due to the Hadley cell-based descending air over the AP, as well as due to the presence of Somali jet in dry season (June to September) for the southern (≤22° N) AP domain, leading to significantly reduced precipitation in the AP. The AP thus acts more as a net transporter of moisture flux from adjacent Sea areas to nearby regions. The North Atlantic Oscillation (NAO) and the Artic Oscillation (AO) climatic indices are found to modulate significantly the net seasonal moisture flux into the AP region animating from the Mediterranean Sea, and the Arabian Sea, both for the northern (≥22° N) and southern AP domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelmola YK (2009) Surface synoptic type over central Sudan during 1994–2003. Ph.D. Dissertation. Aristotle University

  • Almazroui M, Islam MN, Athar H, Jones PD, Rahman MA (2012a) Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int J Climatol 32:953–966. doi:10.1002/joc.3446

    Article  Google Scholar 

  • Almazroui M, Islam MN, Jones PD, Athar H, Rahman MA (2012b) Recent climate change in the Arabian Peninsula: seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009. Atmos Res 111:29–45. doi:10.1016/j.atmosres.2012.02.013

    Article  Google Scholar 

  • Almazroui M, Abid MA, Athar H, Islam MN, Ehsan MA (2013) Interannual variability of rainfall over the Arabian Peninsula using the IPCC AR4 Global Climate Models. Int J Climatol 33:2328–2340. doi:10.1002/joc.3600

    Article  Google Scholar 

  • Ambaum HPM, Hoskins BJ, Stephenson DB (2001) Arctic Oscillation or North Atlantic Oscillation? J Clim 14:3495–3507

    Article  Google Scholar 

  • Athar H, Almazroui M, Islam MN, Abid MA, Ehsan MA (2013) Effect of mid-latitude blocking anticyclones on the weather of the Arabian Peninsula. Int J Climatol 33:585–598. doi:10.1002/joc.3450

    Article  Google Scholar 

  • Athar H (2014) Trends in observed extreme climate indices in Saudi Arabia during 1979–2008. Int J Climatol 34:1561–1574. doi:10.1002/joc.3783

    Article  Google Scholar 

  • Athar H (2015) Teleconnections and variability in observed rainfall over Saudi Arabia during 1978–2010. Atmos Sci Lett. doi:10.1002/asl2.570

    Google Scholar 

  • Babu CA, Samah AA, Varikoden H (2011) Rainfall climatology over Middle East region and its variability. Int J Water Resour Arid Environ 1(3):180–192

    Google Scholar 

  • Barth H-J, Steinkohl F (2004) Origin of winter precipitation in the central coastal lowlands of Saudi Arabia. J Arid Environ 57(1):101–115

    Article  Google Scholar 

  • Chakraborty A, Behera SK, Mujumdar M, Ohba R, Yamagata T (2006a) Diagnosis of tropospheric moisture over Saudi Arabia and influences of IOD and ENSO. Mon Weather Rev 134:598–617

    Article  Google Scholar 

  • Chakraborty A, Mujumdar M, Behera SK, Ohba R, Yamagata T (2006b) A cyclone over Saudi Arabia on 5 January 2002: a case study. Meteorol Atmos Phys 93:115–122

    Article  Google Scholar 

  • Charabi Y (2009) Arabian summer monsoon variability: teleconexion to ENSO and IOD. Atmos Res 91:105–117

    Article  Google Scholar 

  • Charney JG (1975) Dynamics of deserts and drought in the Sahel. Q J R Meteorol Soc 101(428):193–202. doi:10.1002/qj.49710142802

    Article  Google Scholar 

  • Dai A (2006) Recent climatology, variability, and trends in global surface humidity. J Clim 19:3589–3606. doi:10.1175/JCLI3816.1

    Article  Google Scholar 

  • Dickson RR, Osborn TJ, Hurrell JW, Meincke J, Blindheim J, Adlandsvik B, Vinje T, Alekseev G, Maslowski W (2000) The Arctic Ocean response to the North Atlantic oscillation. J Clim 13:2671–2696

    Article  Google Scholar 

  • Edgell HS (2006) Arabian deserts: nature, origin and evolution. Springer, The Netherlands

    Book  Google Scholar 

  • Farajzadeh M, Ahmadabad MK, Ghaemi H, Mobasheri MR (2007) Studying the moisture flux over west of Iran: a case study of January 1 to 7, 1996 rain storm. J Appl Sci 7(20):3023–3030

    Article  Google Scholar 

  • Findlater J (1969) A major low-level air current near the Indian Ocean during the northern summer. Q J Roy Meteorol Soc 95:362–380

    Article  Google Scholar 

  • Gimeno L, Nieto R, Drumond A, Durán-Quesada AM, Stohl A, Sodemann H, Trigo RM (2011) A close look at oceanic sources of continental precipitation. Eos 92(23):193–194

    Article  Google Scholar 

  • Halpern D, Woiceshyn PM (1999) Onset of the Somali Jet in the Arabian Sea during June 1997. J Geophys Res 104(C8):18041–18046. doi:10.1029/1999JC900141

    Article  Google Scholar 

  • Hurrell J (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269(5224):676–679. doi:10.1126/science.269.5224.676

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact, Geophys Monogr 134. Am Geophys Union, Washington, USA, pp 1–36

    Chapter  Google Scholar 

  • IPCC (2013) Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, BexV and Midgley PM (eds). Cambridge University Press, Cambridge, 1535 p.

  • JianQi S, Wei Y, YuZhong G (2008) Arabian Peninsula-North Pacific Oscillation and its association with the Asian summer monsoon. Sci China Ser D Earth Sci 51(7):1001–1012

    Article  Google Scholar 

  • Jin F, Kitoh A, Alpert P (2011) Climatological relationships among the moisture budget components and rainfall amounts over the Mediterranean based on a super‐high‐resolution climate model. J Geophys Res 116, D09102

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Hvd D, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Krishnamurti T N (1996) An introduction to numerical weather prediction techniques. CRC Press

  • López-Moreno JI, Vicente-Serrano SM (2008) Positive and negative phases of the wintertime North Atlantic Oscillation and drought occurrence over Europe: a multitemporal-scale Approach. J Clim 21:1220–1243

    Article  Google Scholar 

  • Marcella MP, Eltahir E (2008) The hydroclimatology of Kuwait: explaining the variability of rainfall at seasonal and interannual time scales. J Hydrometeorol 9:1095–1105. doi:10.1175/2008JHM952.1

    Article  Google Scholar 

  • Min W, Schubert S (1997) The climate signal in regional moisture fluxes: a comparison of three global data assimilation products. J Clim 10:2623–2642

    Article  Google Scholar 

  • Mujumdar M (2006) Diagnostic analysis of wintertime rainfall events over the Arabian region. ISSN 0252 − 1075, Indian Institute of Tropical Meteorology Research Report No. RR − 111

  • Peixoto JP, Oort AH (1983) The atmospheric branch of the hydrological cycle and climate. Variations of the global water budget, Reidel, pp 5–65

  • Peixoto JP, Oort AH (1992) Physics of climate. AIP Press

  • Pinto JG, Raible CC (2012) Past and recent changes in the North Atlantic Oscillation. WIREs Clim Chang 3:79–90. doi:10.1002/wcc.150

    Article  Google Scholar 

  • Prasanna V, Yasunari T (2011) Simulated changes in the atmospheric water balance over South Asia in the eight IPCC AR4 coupled climate models. Theor Appl Climatol 104:139–158. doi:10.1007/s00704−010−0331−6

    Article  Google Scholar 

  • Rodwell MR, Hoskins BJ (1996) Monsoons and the dynamics of deserts. Q J Roy Meteorol Soc 122:1385–1404

    Article  Google Scholar 

  • Rosen RD, Salstein DA, Peixoto JP (1979) Streamfunction analysis of interannual variability in large-scale water vapor flux. Mon Weather Rev 107:1682–1684

    Article  Google Scholar 

  • Sherwood SC, Roca R, Weckwerth TM, Andronova NG (2010) Tropospheric water vapor, convection, and climate. Rev Geophys 48, RG2001. doi:10.1029/2009RG000301

    Article  Google Scholar 

  • Starr VP, Peixoto JP (1958) On the global balance of water vapour and the hydrology of deserts. Tellus 10(2):188–194

    Article  Google Scholar 

  • Trenberth KE (2011) Change in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • Vincent P (2008) Saudi Arabia: an environmental overview. Taylor and Francis, London

    Book  Google Scholar 

  • Viste E, Sorteberg A (2013a) Moisture transport into the Ethiopian highlands. Int J Climatol 33:249–263. doi:10.1002/joc.3409

    Article  Google Scholar 

  • Viste E, Sorteberg A (2013b) The effect of moisture transport variability on Ethiopian summer precipitation. Int J Climatol 33:3106–3123. doi:10.1002/joc.3566

    Article  Google Scholar 

  • Walters KR Sr, Sjoberg WF (1988) The Persian Gulf region: a climatological study. USAF Environmental Technical Applications Center, Scott Air Force Base, Illinois, 62225–5438, USA. Technical report No. USAFETAC/TN–88/002 (AD–A222 654)

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Elsevier publishers, New York, USA

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Zhu Y, Newell RE (1998) A proposed algorithm for moisture fluxes from atmospheric rivers. Mon Weather Rev 126:725–735

    Article  Google Scholar 

Download references

Acknowledgments

The NCEP reanalysis data was obtained from the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, through their Web site at http://www.esrl.noaa.gov/psd/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Athar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athar, H., Ammar, K. Seasonal characteristics of the large-scale moisture flux transport over the Arabian Peninsula. Theor Appl Climatol 124, 565–578 (2016). https://doi.org/10.1007/s00704-015-1437-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1437-7

Keywords

Navigation