Skip to main content

Advertisement

Log in

Suitability of different comfort indices for the prediction of thermal conditions in tree-covered outdoor spaces in arid cities

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Outdoor thermal comfort is one of the most influential factors in the habitability of a space. Thermal level is defined not only by climate variables but also by the adaptation of people to the environment. This study presents a comparison between inductive and deductive thermal comfort models, contrasted with subjective reports, in order to identify which of the models can be used to most correctly predict thermal comfort in tree-covered outdoor spaces of the Mendoza Metropolitan Area, an intensely forested and open city located in an arid zone. Interviews and microclimatic measurements were carried out in winter 2010 and in summer 2011. Six widely used indices were selected according to different levels of complexity: the Temperature-Humidity Index (THI), Vinje’s Comfort Index (PE), Thermal Sensation Index (TS), the Predicted Mean Vote (PMV), the COMFA model’s energy balance (S), and the Physiological Equivalent Temperature (PET). The results show that the predictive models evaluated show percentages of predictive ability lower than 25 %. Despite this low indicator, inductive methods are adequate for obtaining a diagnosis of the degree and frequency in which a space is comfortable or not whereas deductive methods are recommended to influence urban design strategies. In addition, it is necessary to develop local models to evaluate perceived thermal comfort more adequately. This type of tool is very useful in the design and evaluation of the thermal conditions in outdoor spaces, based not only to climatic criteria but also subjective sensations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Where μ is the arithmetic mean of the population and SE is the standard error for the sample mean.

References

  • Alvarez Mancini AA (2000) La Redefinición Territorial del Área Metropolitana de Mendoza en el Contexto de los Actuales Procesos de Transformación. Revista GeoNotas 4 (4). Out/Nov/Dez. Departamento de Geografía – Universidad Estadual de Maringá.

  • Anderson SP, Baumgartner MF (1998) Radiative heating errors in naturally ventilated air temperature measurements made from buoys. J Atmos Oceanic Technol 15:157–173

    Article  Google Scholar 

  • Andrade H, Alcoforado MJ (2008) Microclimatic variation of thermal comfort in a district of Lisbon (Telheiras) at night. Theor Appl Climatol 92(3–4):225–237

    Article  Google Scholar 

  • ASHRAE (2004) Standard 55. Thermal environmental conditions for human occupancy. ASHRAE, Atlanta

    Google Scholar 

  • Auliciems A (1998) Human bioclimatology: an introduction. In Auliciems, A. (ed.) Human Bioclimatology: Advances In Bioclimatology, Vol 5. Springer, p.1-6. doi:10.1007/978-3-642-80419-9_1. Accessed 13 Dec 2013.

  • Balaras C, Tselepidaki I, Santamouris MMC, Asimakopoulos D (1993) Calculations and statistical analysis of the environmental cooling power index for Athens. Greece J Energy Conv and Manag 34(2):139–146

    Article  Google Scholar 

  • Blennow K (1995) Sky view factors from high resolution scanned fish-eye lens photographic negatives. J Atmos Ocean Tech 12:1357–1362

    Article  Google Scholar 

  • Bórmida E (1986) Mendoza, modelo de ciudad oasis Revista SUMMA 226:68–72. Buenos Aires: Ediciones Summa, Agosto de 1986. http://www.um.edu.ar/es/contenido/faud/pdf/1986_-_Summa_226.pdf. Accessed 13 Dec 2013.

  • Brown RD, Gillespie TJ (1995) Microclimatic landscape design: creating thermal comfort and energy efficiency. John Wiley & Sons Inc. (New York), 208 pp

  • Cantón MA, Cortegoso JL, De Rosa C (1994) Solar permeability of urban trees in cities of western Argentina. Energy and Build 20:219–230

    Article  Google Scholar 

  • Cantón MA, Martinez CF (2009) Sustentabilidad del Bosque Urbano en Zonas Áridas: análisis y diagnóstico de la condición de las arboledas en Mendoza - In: PARJAP CONGRESO IBEROAMERICANO DE PARQUES Y JARDINES PÚBLICOS 6., Póvoa de Lanoso, Portugal, 2009. Proceedings… Póvoa de Lanoso, Portugal

  • Córica L, Pattini A (2009) Study of the potential of natural light in low and high density urban environments in the oasis city of Mendoza, in summer. J Light & Visual Environ 33(2):101–106. doi:10.2150/jlve.33.101. Accessed 7 Dec 2013

  • Correa E, Martínez C, Córica L, Cantón M, Pattini A, Lesino G. (2007) Impacto sobre la visión de cielo de las distintas densidades edilicias forestadas. Evaluación a partir de imágenes hemiesféricas. ENCAC - ELACAC 07. XII Brazilian Meeting on Comfort and Energy Efficiency in the Built-Up Environment -V Latin-American Meeting on Comfort and Energy Efficiency in the Built-Up Environment . Ouro Preto, Minas Gerais, Brazil.

  • Correa E, Ruiz MA, Canton A, Lesino G (2012) Thermal comfort in forested urban canyons of low building density. An assessment for the city of Mendoza, Argentina. Build and Environ 58:219–230

    Article  Google Scholar 

  • Crescenti GH, Payne RE, Weller RA (1989) Improved meteorological measurements from buoys and ships (IMET): preliminary comparison of solar radiation air temperature shields. Woods Hole Oceanogr. Inst. Tech. Rep. WHOI-89-46, IMET TR-89-03, Massachusetts, 53 pp. https://darchive.mblwhoilibrary.org/bitstream/handle/1912/6443/WHOI-89-45.pdf?sequence=1. Accessed 26 Ago 2014

  • de Dear RJ, Brager GS (2002) Thermal comfort in naturally ventilated buildings: revisions to ASHRAE standard 55. Energy and Buildings 34(6):549–61

    Article  Google Scholar 

  • Deosthali V (1999) Assessment of impact of urbanization on climate: an application of bio-climatic index. Atmospheric Environ 33(24–25):4125–4133

    Article  Google Scholar 

  • Emmanuel R (2005) Thermal comfort implications of urbanization in a warm-humid city: the Colombo Metropolitan Region (CMR), Sri Lanka. Build and Environ 40:1591–1601

    Article  Google Scholar 

  • Fanger PO (1972) Thermal comfort. Doctoral Thesis. McGraw Hill, New York

  • Fuchs M, Tanner CB (1965) Radiation shields for air temperature thermometers. J Appl Meteor 4:544–547

    Article  Google Scholar 

  • Gaitani N, Mihalakakou G, Santamouris M (2007) On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Build and Environ 42:317–324

    Article  Google Scholar 

  • Garnier BJ (1972) A study of human comfort in Montreal. Canada. Conference on Urban Environment and Second Conference on Biometeorology, Philadelphia

    Google Scholar 

  • Givoni B, Noguchi M, Saaroni H, Pochter O, Yaacov Y, Feller N, Becker S (2003) Outdoor comfort research issues. Energy and Build 35:77–86

    Article  Google Scholar 

  • Givoni B, Noguchi M. (2000) Issues and problems in outdoor comfort research. In: Proceedings PLEA 2000 Conference, Cambridge, United Kingdom

  • Gómez F, Gil L, Jabaloyes J (2004) Experimental investigation on the thermal comfort in the city: relationship with the green areas, interaction with the urban microclimate. Build and Environ 39:1077–1086

    Article  Google Scholar 

  • González Loyarte MM, Menenti M, Diblasi MA (2009) Mapa bioclimático para las travesías de Mendoza (Argentina) basado en la fenología foliar. Revista de la Facultad de Ciencias Agrarias 41 (1):105–122 http://bdigital.uncu.edu.ar/3121 Accessed 13(Dec 2013)

  • Gulyás A, Unger J, Matzarakis A (2006) Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Build Environ 41:1713–1722. doi:10.1016/j.buildenv.2005.07.001. Accessed 26 Ago 2014

  • Höppe P (1984) Die energiebilanz des menschen. Dissertation. Wiss Meteorol, Inst. Univ. München

  • Humphreys MA, Nicol JF (1998) Understanding the adaptive approach to thermal comfort. ASHRAE Transactions 104(1):991–1004

    Google Scholar 

  • Instituto Nacional de Estadística y Censos - INDEC (2010) Censo Nacional de Población, Hogares y Viviendas. 2010. http://www.censo2010.indec.gov.ar/ Accessed 22 May 2012

  • ISO (1994) International Standard 7730: Moderate thermal environments, determination of the PMV and PPD. Indices and specification of the conditions for the thermal comfort. Second edition, ISO, Geneva

    Google Scholar 

  • ISO (1998) International Standard 7726: Ergonomics of the thermal environment—instruments for measuring physical quantities. ISO, Geneva

    Google Scholar 

  • Kakon AN, Nobuo M, Kojima S, Yoko T (2010) Assessment of thermal comfort in respect to building height in a high-density city in the tropics. American J of Eng and Applied Sci 3(3):545–551

    Article  Google Scholar 

  • Kántor N, Unger J, Gulyás Á (2007) Human bioclimatological evaluation with objective and subjective approaches on the thermal conditions of a square in the centre of Szeged. Acta Climatol et Chorol Univ Szegediensis 40–41:47–58

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. doi:10.1127/0941-2948/2006/0130. Accessed 7 May 2013

  • Krüger E, Drach P, Emmanuel R, Corbella O (2013) Urban heat island and differences in outdoor comfort levels in Glasgow, UK. Theor Appl Climatol 112:127–141. doi:10.1007/s00704-012-0724-9. Accessed 26 Ago 2014

  • Lin T-P, Matzarakis A, Hwang R-L (2010) Shading effect on long-term outdoor thermal comfort. Build Environ 45:213–221. doi:10.1016/j.buildenv.2009.06.002. Accessed 26 Ago 2014

  • Mather JR (1974) Climatology: fundamentals and applications. McGraw-Hill, New York

    Google Scholar 

  • Matzarakis A, Mayer H (1997) Heat stress in Greece. Int J Biometeorol 41:34–39

    Article  Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometerol 43:76–84

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of RayMan model. Int J Biometeorol 51:323–334. doi:10.1007/s00484-006-0061-8. Accessed 26 Ago 2014

  • Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139. doi:10.1007/s00484-009-0261-0. Accessed 26 Ago 2014

  • Mercado MV, Esteves A, Filippín C, Flores Larsen S (2009) Sistema de calefacción radiante solar pasivo. Diseño, construcción de un prototipo y obtención de resultados. Energías Renovables y Medio Ambiente 23:53–61

    Google Scholar 

  • Monteiro L (2008) Modelos Preditivos de Conforto Térmico: quantificação de relações entre variáveis microclimáticas e de sensação térmica para avaliação e projeto de espaços abertos. Universidade de São Paulo, São Paulo, Brasil, Tese Doutorado em Engenharia Civil – Escola de Engenharia

    Google Scholar 

  • Monteiro L, Alucci MP (2006) Outdoor thermal comfort: comparison of results of empirical field research and predictive models simulation. Network for Comfort and Energy Use in Buildings (NCEUB), Proceedings of Windsor 2006 Conference: Comfort and energy use in buildings, Windsor

  • Moore F (1992) Test Modules. In: Balcomb JD (ed) Passive solar buildings. The MIT, Cambridge, MA, pp 293–329

    Google Scholar 

  • Müller N, Kuttler W, Barlag A-B (2014) Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theor Appl Climatol 115:243–257. doi:10.1007/s00704-013-0890-4. Accessed 26 Ago 2014

  • National Geographic Society (1990) Greening of an Argentine city, a century old, Earth Almanac. National Geographic Magazine 178(2)

  • Nieuwolt S (1998) Tropical climatology, 2nd edn. John Wiley and Sons Inc, New York

    Google Scholar 

  • Nikolopoulou M, Lykoudis S, Kikira M (2003) Thermal comfort in outdoor spaces: field studies in Greece. In: Klysik K, Oke TR, Fortuniak K, Grimmond CSB, Wibig J (eds) Proceedings of the fifth international conference on urban climate, Lodz 1–5 September 2003. Dept. of Meteorology and Climatology, Univ. of Lodz, Poland, 2:91–94

  • Nikolopoulou M, Steemers K (2003) Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy and Buildings 35:95–101

    Article  Google Scholar 

  • Oke TR (2004) Initial guidance to obtain representative meteorological observations at urban sites. Instruments and Methods of Observation Program, IOM Report No. 81, WMO/TD 1250, World Meteorological Organization, Geneva

  • Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London, 435 pp

    Google Scholar 

  • Picot X (2004) Thermal comfort in urban spaces: impact of vegetation growth: case study: Piazza della Scienza, Milan, Italy. Energy and Buildings 36(4):329–334. doi:10.1016/j.enbuild.2004.01.044, Accessed 16 Dec 2013

    Article  Google Scholar 

  • Ponte JR (2006) Historia del regadío. Las acequias de Mendoza, Argentina. Scripta Nova. Revista electrónica de Geografía y Ciencias Sociales. Barcelona: Universidad de Barcelona, 1 de agosto de 2006, vol. X, núm. 218 (07). http://www.ub.edu/geocrit/sn/sn-218-07.htm. Accessed 13 Dec 2013

  • Spagnolo J, de Dear R (2003) A field study of thermal comfort and semi-outdoor environments in subtropical Sydney Australia. Build and Environ 38:721–738

    Article  Google Scholar 

  • Thom EC (1959) The discomfort index. Weatherwise 12:57–60

    Article  Google Scholar 

  • Thorsson S, Lindberg F, Eliasson I, Holmer B (2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27:1983–1993. doi:10.1002/joc.1537. Accessed 26 Ago 2014

  • Thorsson S, Lindqvist M, Lindqvist S (2004) Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. Int J of Biometeorol 48:149–156

    Article  Google Scholar 

  • Tornero J, Pérez Cueva JA, Gómez Lopera F (2006) Ciudad y confort ambiental: estado de la cuestión y aportaciones recientes. Cuad de Geogr 80:147–182

    Google Scholar 

  • UNCCD-Zoï (2011) Desertication. A visual synthesis. UNCCD-Zoï Environment Network, France. http://www.zoinet.org/web/sites/default/files/publications/Desertification-EXEC-.pdf. Accessed 15 Sept 2014

  • Villalba R, Masiokas MH, Kitzberger T, Boninsegna J (2005) Global Change and Mountain Regions: A State of Knowledge Overview. Advances in Global Change Research, Vol. 23. In: Huber U, Reasoner M, Bugmann H (eds) Biogeographical consequences of recent climate changes in the southern Andes of Argentina. Springer, Dordrecht, pp 157–168

    Google Scholar 

  • Whiteman CD, Hubbe JM, Shaw WJ (2000) Evaluation of an inexpensive temperature datalogger for meteorological applications. J Atmos Oceanic Technol 17:77–81. doi:10.1175/1520-0426(2000)017<0077:EOAITD>2.0.CO;2. Accessed 26 Ago 2014

  • Zowotorizka H (1979) Microclimatic variability within Ottawa’s city centre and its relationship to human comfort. Master of Arts. Carleton University, Canada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Angélica Ruiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, M.A., Correa, E.N. Suitability of different comfort indices for the prediction of thermal conditions in tree-covered outdoor spaces in arid cities. Theor Appl Climatol 122, 69–83 (2015). https://doi.org/10.1007/s00704-014-1279-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1279-8

Keywords

Navigation