Skip to main content

Advertisement

Log in

Probabilistic analysis of extreme regional meteorological droughts by L-moments in a semi-arid environment

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Regional extreme value analyses of drought characteristics provide information on probabilistic nature of drought occurrence, viewed as an essential tool in drought mitigation and planning. In this paper, L-moments are used to investigate the regional characteristics and probabilistic behavior of drought severity levels, represented by the Standardized Precipitation Index (SPI) annual minima (the minimum monthly SPI value). Rainfall data of 3, 6, 12, and 24 month time scales are investigated. A regional watershed in southwestern Iran is used as a case study area. The semi-arid nature of the study area requires appropriate selection of rainfall data. The boxplot approach is used to select those months with adequate data time series for the SPI analysis. Appropriateness of the suggested data time series is discussed in the context of the research by Wu et al. (2007). Based on the results, all of the suggested time scales are found appropriate for SPI investigations. For each time scale of interest regional homogeneity is evaluated and the best regional/sub-regional probability distribution function is selected. Regional quantiles are estimated for different time scales and their variability with respect to return period is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abolverdi J, Khalili D (2010) Development of regional rainfall annual maxima for southwestern Iran by L-moments. Water Resour Manag. doi:10.1007/s11269-009-9565-4

    Google Scholar 

  • Agrawala S, Barlow M, Cullen H, Lyon B (2001) The drought and humanitarian crisis in Central and Southwestern Asia: a climate perspective, IRI special report N. 01-11. Int Res Inst Climate Predic, Palisades

  • Beersma JJ, Buishand TA (2007) Drought in the Netherlands—regional frequency analysis versus time simulation. J Hydrol 347:332–346

    Article  Google Scholar 

  • Bonaccorso B, Bordi I, Cancelliere A, Rossi G, Sutera A (2003) Spatial variability of drought: an analysis of SPI in Sicily. Water Resour Manag 17:273–296

    Article  Google Scholar 

  • Bordi I, Sutera A (2001) Fifty years of precipitation: some spatially remote teleconnections. Water Resour Manag 15:247–280

    Article  Google Scholar 

  • Bordi I, Frigio S, Parenti P, Speranza A, Sutera A (2001) The analysis of the Standardized Precipitation Index in the Mediterranean area: regional patterns. Ann Geofis 44(5–6):979–993

    Google Scholar 

  • Bordi I, Fraedrich K, Petitta M, Sutera A (2006) Extreme value analysis of wet and dry periods in Sicily. Theor Appl Climatol 87:61–71

    Article  Google Scholar 

  • Byun HR, Wilhite DA (1996) Daily quantification of drought severity and duration. J Clim 5:1181–1201

    Google Scholar 

  • Cancelliere A, Salas JD (2004) Drought length properties for periodic-stochastic hydrological data. Water Resour Manag 40:1–13

    Google Scholar 

  • Chung CH, Salas JD (2000) Drought occurrence probabilities and risks of dependent hydrologic processes. J Hydrol Eng 5(3):259–268

    Article  Google Scholar 

  • Demuth S, Kulls CH (1997) Probability analysis and regional aspects of droughts in southern Germany. Sustainability of water resources under increasing uncertainty. IAHS Publ no. 240

  • Dinpashoh Y, Fakheri-Fard A, Moghaddam M, Jahanbakhsh S, Mirni M (2004) Selection of variables for the purpose of regionalization of Iran’s precipitation climate using multivariate methods. J Hydrol 297:109–123

    Article  Google Scholar 

  • Domonkos P (2003) Recent precipitation trends in Hungary in the context of larger scale climatic changes. Nat Hazards 29:255–271

    Article  Google Scholar 

  • Dracup JA, Lee KS, Paulson EG Jr (1980) On the definition of droughts. Water Resour Res 16(2):297–302

    Article  Google Scholar 

  • Eder BK, Davis JM, Monahan JF (1987) Spatial and temporal analysis of the Palmer Drought Severity Index over the southeastern United States. J Climatol 7:31–51

    Article  Google Scholar 

  • Edwards DC, McKee TB (1997) Characteristics of 20th century drought in the United States at multiple timescales, Colorado State University: Fort Collins. Climatology Report No. 97–2

  • Fernandez B, Salas JD (1999a) Return period and risk of hydrologic events I: mathematical formulation. J Hydrol Eng 4(4):297–307

    Article  Google Scholar 

  • Fernandez B, Salas JD (1999b) Return period and risk of hydrologic events. II: applications. J Hydrol Eng 4(4):308–316

    Article  Google Scholar 

  • Gibbs WJ, Maher JV (1967) Rainfall deciles as drought indicators. Bureau of Meteorology bulletin no. 48. Common Wealth of Australia, Melbourne

    Google Scholar 

  • Greenwood J, Landwehr J, Matalas N, Wallis J (1979) Probability weighted moments: definition and relation to parameters of several distribution expressible in inverse form. Water Resour Res 15(5):1049–1054

    Article  Google Scholar 

  • Guttman NB (1998) Comparing the palmer drought severity index and the standardized precipitation index. J Am Water Resour Assoc 34(1):113–121

    Article  Google Scholar 

  • Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35:311–322

    Article  Google Scholar 

  • Guttman NB (1993) The use of L-moment in determination of regional precipitation climates. J Clim 6:2309–2325

    Article  Google Scholar 

  • Guttman NB, Hosking JRM, Wallis JB (1993) Regional precipitation quantile values for the continental US computed from L-moments. J Clim 6:2326–2340

    Article  Google Scholar 

  • Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meteorol Soc 80:429–438

    Article  Google Scholar 

  • Hosking JRM (1986) The theory of probability weighted moment. Research Report RC12210. IBM Research Division, Yorktown Heights, N.Y

    Google Scholar 

  • Hosking JRM (1990) L-moment: analysis and estimation of distributions using linear combination of order statistics. J Royal Stat Soc 52:105–124

    Google Scholar 

  • Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29(2):271–289

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis—an approach based on L-moments. Cambridge University Press

  • Kemal Sonmez F, Umran Komuscu A, Erkan A, Turgu E (2005) An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation index. Nat Hazards 35:243–264

    Article  Google Scholar 

  • Keyantash J, Dracup J (2002) The quantification of drought: an evaluation of drought indices. Bull Am Meteorol Soc 83:1167–1180

    Google Scholar 

  • Kim T, Valdes JB, Yoo C (2003) Nonparametric approach for estimating return periods of droughts in arid regions. J Hydrol Eng 8(5):237–246

    Article  Google Scholar 

  • Lana X, Serra C, Burgueno A (2001) Patterns of monthly rainfall shortage and excess in terms of the standardized precipitation index for Catalonia (NE Spain). Inter J Climatol 21(13):1669–1691

    Article  Google Scholar 

  • Lee SH, Maeng SJ (2005) Estimation of drought rainfall using L-moments. Irrig Drain 54:279–294

    Article  Google Scholar 

  • Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Inter J Climatol 22:1571–1592

    Article  Google Scholar 

  • Loaiciga HA, Leipnik RB (1996) Stochastic renewal model of lowflow stream sequences. Stoch Hydrol Hydraul 10(1):65–85

    Article  Google Scholar 

  • Loukas A, Vasiliades L (2004) Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece. Nat Hazards Earth Sys Sci 4:719–731

    Article  Google Scholar 

  • Mathier L, Perreault L, Ashkar F (1992) The use of geometric and gamma related distributions for frequency analysis of water deficit. Stoch Hydrol Hydraul 6(4):239–254

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proceedings of the Eighth Conference on Applied Climatology, Anaheim, pp 179–184

    Google Scholar 

  • Min SK, Kwon WT, Park EH, Choi Y (2003) Spatial and temporal comparisons of droughts over Korea with East Asia. Int J Climatol 23:223–233

    Article  Google Scholar 

  • Mishra AK, Singh VP, Desai VR (2009) Drought characterization: a probabilistic approach. Stoch Environ Res Risk Asses 23:41–55

    Article  Google Scholar 

  • National Drought Mitigation Center (2006) Drought Science: understanding and defining drought. http://www.ngdc.noaa.gov/paleo/drought/

  • Ntale HK, Gan T (2003) Drought indices and their application to East Africa. Int J Climatol 23:1335–1357

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought. Research Paper No. 45. U.S. Department of Commerce Weather Bureau, Washington, DC

  • Parida BP, Moalafhi DB (2008) Regional rainfall frequency analysis for Botswana using L-moments and radial basis function network. Phys Chem Earth 33:614–620

    Google Scholar 

  • Paulo AA, Pereira LS, Matias PG (2003) Analysis of local and regional droughts in southern Portugal using the theory of runs and the standardized precipitation index. In: Rossi G, Cancelliere A, Pereira LS, Oweis T, Shatanawi M, Zairi A (eds) Tools for drought mitigation in Mediterranean regions. Kluwer, Dordrecht

    Google Scholar 

  • Raziei T, Saghafian B, Paulo AA, Pereira LS, Bordi I (2008) Spatial patterns and temporal variability of drought in western Iran. Water Resour Manag 23(3):439–455

    Article  Google Scholar 

  • Rouault M, Richard Y (2003) Intensity and spatial extension of droughts in South Africa at different time scales. Water SA 29:489–500

    Google Scholar 

  • Sabetraftar A, Abbaspour M (2003) Study and analysis of drought environmental impacts with emphasis on role of water management to mitigate consequences of drought in Iran, Iran. Nat Comm Irrig Drain (INCID) Pub 79:59–68

    Google Scholar 

  • Sankarasubramanian A, Srinivasan K (1999) Investigation and comparison of sampling properties of L-moments and conventional moments. J Hydrol 218:13–34

    Article  Google Scholar 

  • Sen Z (1976) Wet and dry periods of annual flow series. J Hydraul Div 106(HY1):99–115

    Google Scholar 

  • Sergio M, Vilcente S (2006) Differences in spatial patterns of drought on different time scales: an analysis of the Iberian Peninsula. Water Resour Manag 20:37–60

    Article  Google Scholar 

  • Serinaldi F, Bonaccorso B, Cancelliere A, Grimaldi S (2008) Probabilistic characterization of drought properties through copulas. Phys Chem Earth 34:596–605

    Google Scholar 

  • Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20:795–815

    Article  Google Scholar 

  • Shiau JT, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plan Manage 127(1):30–40

    Article  Google Scholar 

  • Soleimani K, Ramezani N, Ahmadi MZ, Bayat F (2005) Drought and rainfall trend analysis in Mazandaran watershed. Khazar Agric Nat Resour Bull 1(3):13–28

    Google Scholar 

  • Steinemann A (2003) Drought indicators and triggers: a stochastic approach to evaluation. J Am Water Resour Assoc 39(5):1217–1233

    Article  Google Scholar 

  • Svoboda M, LeCompte D, Hayes M, Heim R, Gleason K, Angel J, Rippey B, Tinker R, Palecki M, Stooksbury D, Miskus D, Stephens S (2002) The drought monitor. Bull Am Meteorol Soc 83:1181–1190

    Google Scholar 

  • Szalai S, Szinell C (2000) Comparison of two drought indices for drought monitoring in Hungary—a case study. In: Vogt JV, Somma F (eds) Drought and drought mitigation in Europe. Kluwer, Dordrecht, pp 161–166

    Google Scholar 

  • Tallaksen LM, Madsen H, Clausen B (1997) On the definition and modeling of stream drought duration and deficit volume. Hydrol Sci J 42(1):15–33

    Article  Google Scholar 

  • Thom HCS (1951) A frequency distribution for precipitation (abstract). Bull Am Meteorol Soc 32(10):397

    Google Scholar 

  • Thom HCS (1958) A note on the gamma distribution. Mon Weather Rev 86:117–122

    Article  Google Scholar 

  • Tonkaz T (2006) Spatio-temporal assessment of historical drought using SPI with GIS in GPA region, Turkey. J Appl Sci 6(12):2565–2571

    Article  Google Scholar 

  • Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resour Manag 21:821–833

    Article  Google Scholar 

  • Tsakiris G, Vangelis H (2004) Towards a drought watch system based on spatial SPI. Water Resour Manag 18:1–12

    Article  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading

    Google Scholar 

  • Vicente-Serrano SM, De Gonzalez-Hidalgo JC, Luis M, Raventos J (2004) Drought patterns in the Mediterranean area: the Valencia region (eastern Spain). Clim Res 26:5–15

    Article  Google Scholar 

  • Wilhite DA (1997) A methodology for drought preparedness. Nat Hazards 13:229–252

    Google Scholar 

  • Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. IWRA Water Int 10(33):110–120

    Google Scholar 

  • Wu H, Svobod MD, Hayes MJ, Wilhite DA, Wen F (2007) Appropriate application of standard precipitation index in arid locations and arid seasons. Int J Climatol 27:65–79

    Article  Google Scholar 

  • Yazdani S, Haghsheno M (2008) Drought management and recommended solutions on how to deal with droughts. Americ-Eurasian J Agric Environ Sci 2:64–68

    Google Scholar 

  • Yildiz O (2009) Assessing temporal and spatial characteristics of droughts in the Hirfanli dam basin. Turk Sci Res Essay 4(4):249–255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davar Khalili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abolverdi, J., Khalili, D. Probabilistic analysis of extreme regional meteorological droughts by L-moments in a semi-arid environment. Theor Appl Climatol 102, 351–366 (2010). https://doi.org/10.1007/s00704-010-0265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-010-0265-z

Keywords

Navigation