Skip to main content

Advertisement

Log in

Global warming mitigation by sulphur loading in the stratosphere: dependence of required emissions on allowable residual warming rate

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

An approach to mitigate global warming via sulphur loading in the stratosphere (geoengineering) is studied, employing a large ensemble of numerical experiments with the climate model of intermediate complexity IAP RAS CM. The model is forced by the historical+SRES A1B anthropogenic greenhouse gases+tropospheric sulphates scenario for 1860–2100 with additional sulphur emissions in the stratosphere in the twenty-first century. Different ensemble members are constructed by varying values of the parameters governing mass, horizontal distribution and radiative forcing of the stratospheric sulphates. It is obtained that, given a global loading of the sulphates in the stratosphere, among those studied in this paper latitudinal distributions of geoengineering aerosols, the most efficient one at the global basis is that peaked between 50°N and 70°N and with a somewhat smaller burden in the tropics. Uniform latitudinal distribution of stratospheric sulphates is a little less efficient. Sulphur emissions in the stratosphere required to stop the global temperature at the level corresponding to the mean value for 2000–2010 amount to more than 10 TgS/year in the year 2100. These emissions may be reduced if some warming is allowed to occur in the twenty-first century. For instance, if the global temperature trend S g in every decade of this century is limited not to exceed 0.10 K/decade (0.15 K/decade), geoengineering emissions of 4–14 TgS/year (2–7 TgS/year) would be sufficient. Even if the global warming is stopped, temperature changes in different regions still occur with a magnitude up to 1 K. Their horizontal pattern depends on implied latitudinal distribution of stratospheric sulphates. In addition, for the stabilised global mean surface air temperature, global precipitation decreases by about 10%. If geoengineering emissions are stopped after several decades of implementation, their climatic effect is removed within a few decades. In this period, surface air temperature may grow with a rate of several Kelvins per decade. The results obtained with the IAP RAS CM are further interpreted employing a globally averaged energy–balance climate model. With the latter model, an analytical estimate for sulphate aerosol emissions in the stratosphere required climate mitigation is obtained. It is shown that effective vertical localisation of the imposed radiative forcing is important for geoengineering efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreae MO, Jones CD, Cox PM (2005) Strong present-day aerosol cooling implies a hot future. Nature 435:1187–1190

    Article  Google Scholar 

  • Andronova NG, Rozanov EV, Yang F, Schlesinger ME, Stenchikov GL (1999) Radiative forcing by volcanic aerosols from 1850 to 1994. J Geophys Res 104:16807–18826

    Article  Google Scholar 

  • Angell JK (1997) Estimated impact of Agung, El Chichón, and Pinatubo volcanic eruptions on global and regional total ozone after adjustment for the QBO. Geophys Res Lett 24:647–650

    Article  Google Scholar 

  • Bluth GJS, Doiron SD, Schnetzler CC, Krueger AJ, Walter LS (1992) Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys Res Lett 19:151–154. doi:10.1029/91GL02792

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  Google Scholar 

  • Brovkin V, Petoukhov V, Claussen M, Bauer E, Archer D, Jaeger C (2009) Geoengineering climate by stratospheric sulfur injections: earth system vulnerability to technological failure. Clim Change 92:243–259

    Article  Google Scholar 

  • Budyko MI (1977) Climate changes. American Geophysical Union, Washington, D.C., pp 244

    Google Scholar 

  • Chernokulsky AV, Eliseev AV, Mokhov II (2010) Analytic estimations for efficiency of prevention of global warming by sulphur aerosol emissions into stratosphere. Rus Meteorol Hydrol, 35 (in press)

  • Chou M-D, Peng L, Arking A (1984) Climate studies with a multilayer energy balance model. Part III: climatic impact of stratospheric volcanic aerosols. J Atmos Sci 41:759–767

    Article  Google Scholar 

  • Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate–carbon cycle projections for the 21st century. Theor Appl Climatol 78:137–156

    Article  Google Scholar 

  • Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77:211–219

    Article  Google Scholar 

  • Demchenko PF, Eliseev AV, Arzhanov MM, Mokhov II (2006) Impact of global warming rate on permafrost degradation. Izv, Atmos Ocean Phys 42:32–39

    Article  Google Scholar 

  • Eliseev AV, Mokhov II (2008) Influence of volcanic activity on climate change in the past several centuries: assessments with a climate model of intermediate complexity. Izv, Atmos Ocean Phys 44:671–683

    Article  Google Scholar 

  • Eliseev AV, Mokhov II (2009) Model estimations of global warming mitigation efficiency depending on scenarios of controlled aerosol emissions in the stratosphere. Izv, Atmos Ocean Phys 45:221–232

    Article  Google Scholar 

  • Eliseev AV, Mokhov II, Arzhanov MM, Demchenko PF, Denisov SN (2008) Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity. Izv, Atmos Ocean Phys 44:139–152

    Article  Google Scholar 

  • Eliseev AV, Mokhov II, Karpenko AA (2007) Influence of direct sulfate-aerosol radiative forcing on the results of numerical experiments with a climate model of intermediate complexity. Izv, Atmos Ocean Phys 42:544–554

    Article  Google Scholar 

  • Eliseev AV, Mokhov II, Karpenko AA (2009) Global warming mitigation by means of controlled aerosol emissions of sulphate aerosols into the stratosphere: global and regional peculiarities of temperature response as estimated in IAP RAS CM simulations. Atmos Ocean Opt 22:388–395

    Article  Google Scholar 

  • Groisman PYa (1985) Regional climatic consequences of volcanic eruptions. Soviet Meteorol Hydrol 10:39–45

    Google Scholar 

  • Hansen J, Lacis A, Ruedy R, Sato M (1992) Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett 19:215–218

    Article  Google Scholar 

  • Hansen J, Russell G, Lacis A, Fung I, Rind D, Stone P (1985) Climate response times: dependence on climate sensitivity and ocean mixing. Science 229:857–859

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas Ja, Vand Perlwitz, Perlwitz Ju, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. doi:10.1029/2005JD005776

    Article  Google Scholar 

  • Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott PA (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, LeRoy Miller H, Chen Z (eds) Climate change: the physical science basis. Cambridge University Press, Cambridge, pp 663–745

    Google Scholar 

  • Horowitz LW (2006) Past, present, and future concentrations of tropospheric ozone and aerosols: methodology, ozone evaluation, and sensitivity to aerosol wet deposition. J Geophys Res 111:D22211. doi:10.1029/2005JD006937

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden van der PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 881

    Google Scholar 

  • Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–390

    Google Scholar 

  • Huntingford C, Harris PP, Gedney N, Cox PM, Betts RA, Marengo JA, Gash JHC (2004) Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theor Appl Climatol 78:177–185

    Article  Google Scholar 

  • Izrael YuA (2005) An efficient way to regulate global climate is the main goal of the climate problem solution. Rus Meteorol Hydrol 30:1–4

    Google Scholar 

  • Lacis A, Hansen J, Sato M (1992) Climate forcing by stratospheric aerosols. Geophys Res Lett 19:1607–1610

    Article  Google Scholar 

  • MacFarling Meure C, Etheridge D, Trudinger C, Steele P, Langenfelds R, Ommen van T, Smith A, Elkins J (2006) Law dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett 33:L14810. doi:10.1029/2006GL026152

    Article  Google Scholar 

  • Marland G, Boden TA, Andres RJ (2005) Global, regional, and national CO2 emissions. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn

    Google Scholar 

  • Matthews HD, Caldeira K (2007) Transient climate–carbon simulations of planetary geoengineering. Proc Nat Acad Sci 104:9949–9954

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, LeRoy Miller H, Chen Z (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Mokhov II, Bezverkhnii VA, Eliseev AV, Karpenko AA (2008a) Model estimations of possible climatic changes in 21st century at different scenarios of solar and volcanic activities and anthropogenic impact. Cosmic Res 46:354–357

    Article  Google Scholar 

  • Mokhov II, Bezverkhny VA, Eliseev AV, Karpenko AA (2008b) Solar activity and estimation of its influence on global temperature. In: Zherebtsov GA (ed) Changes of natural environment and climate: natural and possible consequent human-induced catastrophes, v.VIII, solar activity and physical processes in the sun–earth system. ISTP SB RAS, Moscow, pp 143–149 (in Russian)

    Google Scholar 

  • Mokhov II, Eliseev AV (2008) Geoengineering efficiency: preliminary assessment with a climate model of intermediate complexity. In: Côté J (ed) Research activities in atmospheric and oceanic modelling, vol WGNE Rep 38. World Climate Research Programme, Geneva, pp 07.21–07.22

    Google Scholar 

  • Mokhov II, Eliseev AV, Arzhanov MM, Demchenko PF, Denisov SN, Karpenko AA (2008c), Modelling of changes in high latitudes using the IAP RAS climate model. In: Kotlyakov VM (ed) Changes of natural environment and climate: natural and possible consequent human-induced catastrophes, v II, environmental processes in the polar regions of the earth. IG RAS, Moscow (in Russian)

    Google Scholar 

  • Myhre G, Highwood EJ, Shine KP, Stordal F (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys Res Lett 25:2715–2718

    Article  Google Scholar 

  • Rasch PJ, Crutzen PJ, Coleman DB (2008a) Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys Res Lett 35:L02809. doi:10.1029/2007GL032179

    Article  Google Scholar 

  • Rasch PJ, Tilmes S, Turco RP, Robock A, Oman L, Chen C-C, Stenchikov GL, Garcia RR (2008b) An overview of geoengineering of climate using stratospheric sulphate aerosols. Philos Trans R Soc, Ser A 366:4007–4037

    Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Article  Google Scholar 

  • Robock A, Oman L, Stenchikov GL (2008) Regional climate responses to geoengineering with tropical and arctic SO2 injections. J Geophys Res 113:D16101. doi:10.1029/2008JD010050

    Article  Google Scholar 

  • Schneider SH (1996) Geoengineering: could—or should—we do it? Clim Change 33:291–302

    Article  Google Scholar 

  • Schneider SH (2001) Earth systems engineering and management. Nature 409:417–421

    Article  Google Scholar 

  • Shvidenko A, Nilsson S (2003) A synthesis of the impact of Russian forests on the global carbon budget for 1961–1998. Tellus 55B:391–415

    Google Scholar 

  • Smith SJ, Pitcher H, Wigley TML (2001) Global and regional anthropogenic sulfur dioxide emissions. Glob Planet Change 29:99–119

    Article  Google Scholar 

  • Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316

    Article  Google Scholar 

  • Stern DI, Kaufmann RK (1996) Estimates of global anthropogenic methane emissions 1860–1993. Chemosphere 33:159–176

    Article  Google Scholar 

  • Stocker TF, Schmittner A (1997) Influence of CO2 emission rates on the stability of thermohaline circulation. Nature 388:862–865

    Article  Google Scholar 

  • Stowe LL, Carey RM, Pellegrino PP (1992) Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data. Geophys Res Lett 19:159–162

    Article  Google Scholar 

  • Tilmes S, Muller R, Salawitch R (2008) The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320:1201–1204

    Article  Google Scholar 

  • Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34:L15702. doi:10.1029/2007GL030524

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, LeRoy Miller H, Chen Z (eds) Climate Change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  • Wigley TML (2000) ENSO, volcanoes and record-breaking temperatures. Geophys Res Lett 27:4101–4104

    Article  Google Scholar 

  • Wigley TML (2006) A combined mitigation/geoengineering approach to climate stabilization. Science 314:452–454

    Article  Google Scholar 

  • Zerefos CS, Tourpali K, Bais AF (1994) Further studies on possible volcanic signal to the ozone layer. J Geophys Res 99:25741–25746

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to I.L. Karol and G.L. Stenchikov for useful discussions on the topic of the manuscript. Constructive comments of the anonymous reviewers were very helpful in improving the paper. This work has been supported by the Russian Foundation for Basic Research (grants 07-05-00164, 07-05-00273, 08-05-00358, 08-05-00532 and 09-05-13538), the President of Russia grant 755.2008.5 and the Programs of the Russian Ministry for Science and Education, Russian Federal Agency for Science and Innovations and the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Eliseev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliseev, A.V., Chernokulsky, A.V., Karpenko, A.A. et al. Global warming mitigation by sulphur loading in the stratosphere: dependence of required emissions on allowable residual warming rate. Theor Appl Climatol 101, 67–81 (2010). https://doi.org/10.1007/s00704-009-0198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-009-0198-6

Keywords

Navigation