Skip to main content

Advertisement

Log in

Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson’s disease (PD): historical overview and future prospects

  • Translational Neurosciences - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson’s disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic l-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as l-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asanuma M, Miyazaki I, Diaz-Corrales FJ, Kimoto Y, Takeshima M, Miyoshi K, Murata M (2010) Neuroprotective effects of zonisamide target astrocyte. Ann Neurol 67(2):239–249

    Article  CAS  PubMed  Google Scholar 

  • Axelrod J (1957) O-Methylation of epinephrine and other catecholamines in vitro and invivo. Science 126:400–401

    Article  CAS  PubMed  Google Scholar 

  • Axelrod J, Weil-Malherbe H, Tomchick R (1959) The physiological distribution of 3H-epinephrine and its metabolite epinephrine. J Pharmacol Exp Therap 127:251–256

    CAS  Google Scholar 

  • Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 85(13):4934–4948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baetge EE, Behringer RR, Messing A, Brinster RL, Palmiter RD (1988) Transgenic mice express the human phenylethanolamine N-methyltransferase gene in adrenal medulla and retina. Proc Natl Acad Sci USA 85(1):3648–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbeau A (1969) l-Dopa therapy in Parkinson’s disease. Can Med Aassoc J 101:59–68

    CAS  Google Scholar 

  • Barbeau A, Murphy GF, Sourkes TL (1961) Excretion of dopamine in diseases of basal ganglia. Science 133:120–123

    Article  Google Scholar 

  • Barkats M, Bilang-Bleuel A, Buc-Caron MH, Castel-Barthe MN, Corti O, Finiels F, Horellou P, Ravah F, Sabate O, Mallet O (1998) Adenovirus in the brain: recent advances of gene therapy for neurodegenedrative diseases. Prog Neurobiol 55(4):333–3341

    Article  CAS  PubMed  Google Scholar 

  • Bartholini G, Burkard WP, Pletscher A, Bates HM (1967) Increase of cerebral catecholamines caused by 3,4-dihydroxyphenylalanine after inhibition of peripheral decarboxylase. Nature 215:852–853

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, Mackenzie G, Garcia-Osuna M, Panov AV, Greenamyre T (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1961) Der l-3,4-Dioxyphenylalanin (l-DOPA)-Effekt bei der Parkinson-Akinese. Wien Klin Wochenschr 73:787–788

    CAS  PubMed  Google Scholar 

  • Birkmayer W, Mentasti M (1970) Further experimental studies on the catecholamine metabolism in extrapyramidal diseases (Parkinson and chorea syndromes) [Article in German]. Arch Psychiatr Nervenkr 210(1):29–35

    Article  Google Scholar 

  • Birkmayer W, Riederer P, Youdim MB, Linauer W (1975) The potentiation of the anti akinetic effect after l-dopa treatment by inhibitor of MAO-B, Deprenil. J Neural Transm 36(3–4):303–326

    Article  CAS  PubMed  Google Scholar 

  • Birkmayer W, Birkmayer G, Lechner H, Riederer P (1983) dl-Threo-DOPS in Parkinson’s disease: effects on orthostatic hypotension and dizziness. J Neural Transm 58(3–4):305–313

    Article  CAS  PubMed  Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MB, Hars V, Marton J (1985) Increased life expentancy resulting from addition of L-deprenyl to Medpar treatment in Parkinson's disease. J Neural Transm 64(2):113–127

    Article  CAS  PubMed  Google Scholar 

  • Blau N (ed) (2006) PKU and BH4. SPS Publications, Weinsberg

    Google Scholar 

  • Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease paitiens. Neurosci Lett 202:17–20

    Article  CAS  PubMed  Google Scholar 

  • Bonifácio W, Plama PN, Almeida L, Soares-da-Silva P (2007) Catechol-O-methyltransferase and its inhibitors in Parkinson’s disease. CNS Drug Rev 13:352–379

    Article  PubMed  Google Scholar 

  • Bräutigam C, Wevers RA, Jansen RJT, Smeitink JAM, de Rijk-van Anden JF, Gabreëls FJM, Hoffmann GF (1998) Biochemical hall mark tyrosine hydroxylase deficiency. Clin Chem 44(9):1897–1904

    PubMed  Google Scholar 

  • Breakfield XO, Edelstein SB (1980) Inherited levels of A and B types of monoamine oxidase activity. Schizophr Bull 6 (2):281–288

  • Calne DB, Teychenne PF, Leigh PN, Bamji AN, Greennacre JK (1974) Treatment of parkinsonism with bromocriptine. Lancet 2(7893):1355–1366

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the brain. Pharmacol Rev 11(2):490–493

    CAS  PubMed  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180(4596):1200

    Article  CAS  PubMed  Google Scholar 

  • Collins MA, Neafsey EJ (1985) Beta-carboline analogues of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP): endogenous factors underlying idiopathic parkinsonism? Neurosci Lett 55(2):179–184

    Article  CAS  PubMed  Google Scholar 

  • Cotzias GC, Papavasiliou PS, Gellene R (1969) Modification of Parkinsonism—chronic treatment with l-dopa. N Engl J Med 280(7):337–345

    Article  CAS  PubMed  Google Scholar 

  • Craig SP, Buckle VJ, Lamouroux A, Mallet J (1986) Localization of the human tyrosine hydroxylase gene to 11p15: gene duplication and evolution of metabolic pathways. Cytogenet Cell Genet 42:29–32

    Article  CAS  PubMed  Google Scholar 

  • Cubells JF, van Kammen DP, Kelly ME, Anderson GM, O’Connor DT, Price LH, Malison R, Rao PA, Kobayashi K, Nagatsu T, Gelerntner J (1998) Dopamine β-hydroxylase: two polymorphisms in linkage disequilibrium at the structural gene DBH associate with biochemical phenotypic variation. Hum Genet 102(5):533–540

    Article  CAS  PubMed  Google Scholar 

  • Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • DoI D, Morizane A, Kikuchi T, Onoe H, Hayashi T, Kawasaki T, Motono M, Sasai Y, Saiki H, Gomi M, Yoshikawa T, Hayashi H, Shinoyama M, Mohamed R, Suemori H, Miyamoto S, Takahashi J (2012) Prolonged mutation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived and dopaminergic function of human ESC-derived midbrain dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson’s disease. Stem Cells 30(5):935–945

    Article  CAS  PubMed  Google Scholar 

  • Doi D, Samata B, Katsukawa M, Kikuchi K, Morizane A, Ono Y, Sekiguchi K, Nakagawa M, Parmar M, Takahashi J (2014) Isolation of human induced pluripotent stem cell-drived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep 2(3):337–350

    Article  CAS  Google Scholar 

  • Dumas S, Hir HL, Bodedau-Péan S, Hirsch C, Thermes C, Mallet J (1996) New species of human tyrosine hydroxylase mRNA are produced in various amounts in adrenal medulla and are overexpressed in progressive supranuclear palsy. J Neurochem 67(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EI, Dickson PW (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91(5):1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, Aminoff MJ (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983

    Article  CAS  PubMed  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 38(24):1236–1239

    Article  CAS  PubMed  Google Scholar 

  • Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56(3):331–349

    Article  CAS  PubMed  Google Scholar 

  • Fahn S (2015) The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov Disord 30(1):4–18

    Article  CAS  PubMed  Google Scholar 

  • Fan DS, Ogawa M, Fujimoto K, Ikeguchi K, Ogasawara Y, Urabe M, Nishizawa M, Nakano I, Yoshida M, Nagatsu I, Ichinose H, Nagatsu T, Kurzman GJ, Ozawa K (1998) Behavioral recovery in 6-OHDA-lesioned rats by cotransduction with tyrosine hydroxylase and aromatic l-amino acid decarboxylase genes using two separate AAV vectors. Hum Gene Ther 9(17):2527–2533

    Article  CAS  PubMed  Google Scholar 

  • Fiandaca MS, Bankiewicz KS (2010) Gene therapy for Parkinson’s disease: from non-human primates to humans. Curr Opin Mol Ther 12(5):519–529

    CAS  PubMed  Google Scholar 

  • Frantom PA, Seravalli J, Ragsdale SW, Fitzpatrick PF (2006) Reduction and oxidation of the active site iron in tyrosine hydroxylase: kinetics and specificity. Biochemisty 45(7):2372–2379

    Article  CAS  Google Scholar 

  • Fujisawa H, Okuno S (2005) Regulatory mechanism of tyrosine hydroxylase activity. Biochem Biophys Res Commun 338(1):271–276

    Article  CAS  PubMed  Google Scholar 

  • Gerlach M, Youdim MB, Riederer P (1994) Is selegiline neuroprotective in Parkinson’s disease? J Neural Transm Suppl 41:177–188

    CAS  PubMed  Google Scholar 

  • Gerlach M, Double KL, Youdim MB, Riederer P (2006) Potential source of increased iron in the substantia nigra of parkinsonian patients. J Neural Transm Suppl 70:133–142

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DS, Holmes C, Kopin IJ, Sharabi Y (2011) Intraneuronal vesicular uptake of catecholamines is decreased in patients with Lewy body diseases. J Clin Invest 121(8):3320–3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein DS, Sullivan P, Holmes C, Miller GW, Alter S, Strong R, Mash DC, Kopin IJ, Sharabi Y (2013) Determination of buildup of the toxic dopamine metabolite DOPAL in Parkinson’s disease. J Neurochem 126(5):591–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein DS, Sullivan P, Holmes C, Miller GW, Sharabi Y, Kopin IJ (2014) A vesicular sequestration to oxidative deamination shift in myocardial sympathetic nerves in Parkinson’s disease. J Neurochem 131(2):219–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwill KE, Sabatier C, Marks C, Raag R, Fitzpatrick PF, Stevens RC (1997) Crystal structure of tyrosine hydroxylase at 2.5 A and its implications for inherited neurodegenerative diseases. Nature Struct Biol 4(7):578–585

    Article  CAS  PubMed  Google Scholar 

  • Götz ME, Breithaupt W, Sautter J, Kupsch A, Schwarz J, Ortel WH, Youdim MB, Riederer P, Gerlach M (1998) Chronic TVP-1012 (rasagiline) dose-activity response of monoamine oxidase A and B in the brain of the common marmoset. J Neural Transm Suppl 52:271–278

    Article  Google Scholar 

  • Grima B, Lamouroux A, Boni C, Julian JF, Javoy-Agid F, Mallet J (1987) A single human gene encoding multiple tyrosine hydroxylase with different predicted functional characteristics. Nature 326(6114):707–711

    Article  CAS  PubMed  Google Scholar 

  • Hare ML (1928) Tyramine oxidase: a new enzyme system in liver. Biochem J 22(4):968–979

  • Hare DJ, Gerlach M, Riederer P (2012) Consideration for measuring iron in post-mortem tissue of Parkinson’s disease patients. J Neural Transm 119(12):1515–1521

    Article  CAS  PubMed  Google Scholar 

  • Haycock JW (2002) Species differences in the expression of multiple tyrosine hydroxylase protein isoforms. J Neurochem 81(5):947–995

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 11):S210–S212

    Article  PubMed  Google Scholar 

  • Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T (2016) The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepideminology 46(4):292–300

    Article  Google Scholar 

  • Hoffmann GF, Assmann B, Bräutigam C, Dionisi-Vici C, Häussler M, de Klert JBC, Naumann M, Steenbergen-Spanjers GCH, Strassburg H-M, Wevers RA (2003) Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Ann Neurol 54(6):S56–S65

    Article  CAS  PubMed  Google Scholar 

  • Hökfelt T, Martensson Björklund A, Kleinau S, Goldstein M (1984) Distribution maps of tyrosine-hydroxylase immunoreactive neurons in the rat brain. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Classical transmitters in the CNS, part 1, vol 2. Elsevier, Amsterdam, pp 277–379

    Google Scholar 

  • Ichikawa S, Sasaoka T, Nagatsu T (1991) Primary structure of mouse tyrosine hydroxylase deduced from its cDNA. Biochem Biophys Res Commun 176(3):1610–1616

    Article  CAS  PubMed  Google Scholar 

  • Ichinose H, Kurosawa Y, Titani K, Fujita K, Nagatsu T (1989) Isolation and characterization of a cDNA clone encoding human aromatic l-amino acid decarboxylase. Biochem Biophys Res Commun 164(3):1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Ichinose H, Sumi-Ichinose C, Ohye T, Hagino Y, Fujita K, Nagatsu T (1992) Tissue-specific alternative splicing of the first exon generates two types of mRNAs in human aromatic l-amino acid decarboxylase. Biochemistry 31(46):11546–11550

    Article  CAS  PubMed  Google Scholar 

  • Ichinose H, Ohye T, Fujita K, Yoshida M, Ueda S, Nagatsu T (1993) Increase heterogeneity of tyrosine hydroxylase in humans. Biochem Biophys Res Commun 195(1):158–165

    Article  CAS  PubMed  Google Scholar 

  • Ichinose H, Ohye T, Fujita K, Pantucek F, Lange K, Riederer P, Nagatsu T (1994a) Quantification of mRNA of tyrosine hydroxylase and aromatic l-amino acid decarboxylase in the substantia nigra in Parkinson’s disease and schizophrenia. J Neural Transm P-D Sect 8(1–2):149–158

    Article  CAS  Google Scholar 

  • Ichinose H, Ohye T, Takahashi E, Seki N, Hori T, Segawa M, Nomura Y, Endo K, Tanaka H, Tsuji S, Fujita K, Nagatsu T (1994b) Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 8(3):236–242

    Article  CAS  PubMed  Google Scholar 

  • Ichinose H, Ohye T, Matsuda Y, Hori T, Blau A, Burlina A, Rouse B, Matalon R, Fujita K, Nagatsu T (1995) Characterization of mouse and human GTP cyclohydrolase I deficiency: mutations in patients with GTP cyclohydrolase I deficiency. J Biol Chem 270(17):10062–10071

    Article  CAS  PubMed  Google Scholar 

  • Ichinose H, Suzuki T, Inagaki H, Ohye T, Nagatsu T (1999) Molecular genetics of dopa-responsive dystonia. Biol Chem 380(12):1355–1364

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Soda H, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105(7):891–902

    Article  CAS  PubMed  Google Scholar 

  • Imamura K, Hishikawa N, Ono K, Suzuki H, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2005) Cytokine production of activated microglia and decrease in neurotrophic factors in neurons in the hippocampus of Lewy body disease brain. Acta Neropathol 109(2):141–150

    Article  CAS  Google Scholar 

  • Ishikawa S, Taira T, Takahashi-Niki K, Niki T, Ariga H, Iguchi-Ariga SM (2010) Human DJ-1-specific transcriptional activation of tyrosine hydroxylase gene. J Biol Chem 285(51):39718–39731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itagaki C, Isobe T, Taoka M, Natsume N, Horigome T, Omata S, Ichinose H, Nagatsu T, Greene LA, Ichimura T (1999) Stimulous-coupled interaction of tyrosine hydroxylase with 14-3-3 proteins. Biochemistry 38(47):15673–15680

    Article  CAS  PubMed  Google Scholar 

  • Janssen RJRJ, Wevers RA, Häussler M, Luyten JAFM, Steenbergen-Spanjers GCH, Hoffmann GF, Nagatsu T, van den Heuvel LPWJ (2000) A branch site mutation leading to aberrant splicing of the human tyrosine hydroxylase gene in a child with a severe extrapyramidal movement disorder. Ann Hum Genet 64(5):375–382

    Article  CAS  PubMed  Google Scholar 

  • Kababien JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277(5692):93–96

    Article  Google Scholar 

  • Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912

    Article  CAS  PubMed  Google Scholar 

  • Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205(2):143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda N, Kobayashi K, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1987) Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative mRNA splicing produces four kinds of mRNA from a single gene. Biochem Biophys Res Commun 146(3):971–975

    Article  CAS  PubMed  Google Scholar 

  • Kaneda N, Ichinose H, Kobayashi K, Oka K, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1988) Molecular cloning of cDNA and chromosomal assignment of the gene for human phenylethanolamine-N-methyltransferase, the enzyme for epinephrine biosynthesis. J Biol Chem 263(16):7672–7677

    CAS  PubMed  Google Scholar 

  • Kaneda N, Sasaoka T, Kobayashi K, Kiuchi K, Nagatsu I, Kurosawa Y, Fujita K, Yokoyama M, Nomura T, Katsuki M, Nagatsu T (1991) Tissue-specific and high-level expression of the human tyrosine hydroxylase gene in transgenic mice. Neuron 6(4):583–594

    Article  CAS  PubMed  Google Scholar 

  • Kaneko S, Hikida T, Watanabe D, Ichinose H, Nagatsu T, Kreitman RJ, Pastan I, Nakanishi S (2000) Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. Science 289(5479):633–637

    Article  CAS  PubMed  Google Scholar 

  • Kantor B, Bailey RM, Wimberley K, Kalburgi SN, Gray SJ (2014) Methods for gene transfer to the central nevous system. Adv Genet 87:125–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman S (1963) The structure of the phenylalanine-hydroxylation cofactor. Proc Natl Acad Sci USA 50:1085–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM (2014) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser 65. Biochem J 460(1):127–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitada T, Asakawa S, Hattori H, Yamamura S, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608

    Article  CAS  PubMed  Google Scholar 

  • Kitahama K, Sakamoto N, Jouvet A, Nagatsu I, Pearson J (1996) Dopamine-beta-hydroxylase immunoreactive neurons in the human brain stem. J Chem Neuroanat 10(2):137–146

    Article  CAS  PubMed  Google Scholar 

  • Kitahama K, Ikemoto K, Jouvet A, Araneda S, Nagatsu I, Raynaud B, Nishimura A, Nishi K, Niwa S (2009) Aromatic l-amino acid decarboxylase-immunoreactive structures in human midbrain, pons, and medulla. J Chem Neuroanat 38(2):130–140

    Article  CAS  PubMed  Google Scholar 

  • Knappskog PM, Flatmark T, Mallet J, Lüdecke B, Baltholomé K (1995) Recessively inherited l-DOPA-responsive dystonia caused by a point mutation (Q381K) in the tyrosine hydroxylase gene. Hum Mol Genet 4(7):1209–1212

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Nagatsu T (2005) Molecular genetics of tyrosine 3-monooxygenase and inherited diseases. Biochem Biophys Res Commun 338(1):267–270

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Nagatsu T (2012) Tyrosine hydroxylase. In: Robertson D, Biggioni I, Burnstock G, Low PA, Paton JFR (eds) Primers on the autonomic nervous system. Academic Press/Elsevier, Oxford, pp 45–47

    Chapter  Google Scholar 

  • Kobayashi K, Kaneda N, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1987) Isolation of a full-length cDNA clone encoding human tyrosine hydroxylase type 3. Nucleic Acids Res 15(16):6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Kaneda N, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1988) Structures of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA subtypes. J Biochem 103(6):907–912

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Kurosawa Y, Fujita K, Nagatsu T (1989) Human dopamine beta-hydroxylase gene: two mRNA types having different 3′-terminal region are produced through alternative polyadenylation. Nucleic Acids Res 17(3):1089–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Sasaoka T, Morita S, Nagatsu I, Iguchi A, Kurosawa Y, Fujita K, Nomura T, Kimura M, Katsuki M, Nagatsu T (1992) Genetic alteration of catecholamine specificity in transgenic mice. Proc Natl Acad Sci USA 89(5):1631–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Morita S, Mizuguchi T, Sawada H, Yamada K, Nagatsu I, Fujita K, Nagatsu T (1994) Functional high level expression of human dopamine beta-hydroxylase in transgenic mice. J Biol Chem 269(47):29725–29731

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Morita S, Sawada H, Mizuguchi T, Yamada K, Nagatsu I, Hata T, Watanabe Y, Fujita K, Nagatsu T (1995a) Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. J Biol Chem 270:27232–27243

    Google Scholar 

  • Kobayashi K, Morita S, Sawada H, Mizuguchi T, Yamada K, Nagatsu I, Fujita K, Kreitman RJ, Pastan Y, Nagatsu T (1995b) Immunotoxin-mediated conditional disruption of specific neurons in transgenic mice. Proc Natl Acad Sci USA 92(4):1132–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Noda Y, Matsushita N, Nishii K, Sawada H, Nagatsu T, Nakahara D, Fukabori R, Yasoshima Y, Yamamoto T, Miura M, Kano M, Miyama T, Miyamoto Y, Nabeshima T (2000) Modest neuropsychological deficits caused by reduced noradrenaline metabolism in mice heterozygous for a mutated tyrosine hydroxylase gene. J Neurosci 20(6):2418–2426

    CAS  PubMed  Google Scholar 

  • Kopin IJ (1985) Catecholamine metabolism: basic and clinical significance. Pharmacol Rev 37(4):333–364

    CAS  PubMed  Google Scholar 

  • Kopin IJ (1994) Monoamine oxidase and catecholamine metabolism. J Neural Transm Suppol 41:57–67

    CAS  Google Scholar 

  • Kotake Y, Tasaki Y, Makino Y, Ohta S, Hirobe M (1995) 1-Benzyl-1,2,3,4-tetrahydroisoquinoline as a parkinsonism-producing agent: a novel endogenous amine in mouse brain and parkinsonian CSF. J Neurochem 65(6):2633–2638

    Article  CAS  PubMed  Google Scholar 

  • Kotterman MA, Chalberg TW, Schaffer DV (2015) Viral vectors for gene therapy: translational and clinical outlooks. Annu Rev Biomed Eng 17:63–89

    Article  CAS  PubMed  Google Scholar 

  • Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsutia H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510(7503):370–375

    Google Scholar 

  • Kuruma I, Bartholini G, Tissot R, Pletscher A (1971) The metabolism of l-3-O-methyl-dopa, a precursor of dopa in man. Clin Pharmacol Ther 12:672–682

    Article  Google Scholar 

  • Kvetnansky R, Sabban EL, Palkovits M (2006) Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 89(2):535–606

    Article  CAS  Google Scholar 

  • Lamouroux A, Faucon Biguet N, Samolyk D, Privat A, Salomon JC, Pujol JF, Mallet J (1982) Identification of cDNA clone coding for rat tyrosine hydroxylase antigen. Proc Natl Acad Sci USA 79(12):3881–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamouroux A, Vigny A, Faucon Biguet N, Darmon MC, Franck R, Henry JP, Mallet J (1987) The primary structure of human dopamine-beta-hydroxylase: insights into the relationship between the soluble and the membrane-bound forms of the enzyme. EMBO J 6(13):3931–3937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lange KW, Rausch WD, Gsell W, Naumann M, Oestreichr E, Riederer P (1994) Neuroprotection by dopamine agonists. J Neural Transm Suppl 43:183–201

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980

    Article  CAS  PubMed  Google Scholar 

  • Le Bourdellès A, Boularand S, Bonic C, Horellou P, Dumas S, Grima B, Mallet J (1988) Analysis of the 5′ region of the human tyrosine hydroxylase generate multiple regulated tyrosine hydroxylase isoforms. J Neurochem 50(1):142–148

    Article  Google Scholar 

  • Lehman IT, Bobrovskaya L, Gordon SL, Dunkley PR, Dickson PW (2006) Differential regulation of the human tyrosine hydroxylase isoforms via hierarchical phosphorylation. J Biol Chem 281(26):17644–17651

    Article  CAS  Google Scholar 

  • Levitt M, Spector S, Sjoerdsma A, Udenfriend S (1965) Elucidation of the rate-limiting step in nor-epinephrine biosynthesis in the perfused guinea-pig heart. J Pharmacol Exp Therap 148:1–8

    CAS  Google Scholar 

  • Lewis DA, Melchitzky DS, Haycock JW (1993) Four isoforms of human tyrosine hydroxylase are expressed in human brain. Neuroscience 54(2):477–492

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Melchitzky DS, Haycock JW (1994) Expression and distribution of two isoforms of tyrosine hydroxylase in macaque monkey brain. Brain Res 656(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Lloyd KG, Davidson L, Hornykiewicz O (1975) The neurochemistry of Parkinson’s disease: effect of l-DOPA therapy. J Pharmacol Exp Ther 153(3):453–464

    Google Scholar 

  • Lüdecke B, Dworniczak B, Bartholomé K (1994) A point mutation in the tyrosine hydroxylase associated with Segawa’s syndrome. Hum Genet 93(1):123–125

    Google Scholar 

  • Lüdecke B, Knappskog PM, Clayton PT, Surtees RAH, Clelland JD, Heales SJR, Brand MP, Bartholomé K, Flattmark T (1996) Recessively inherited l-DOPA-responsive parkinsonism in infancy caused by a point mutation (L205P) in the tyrosine hydroxylase gene. Hum Mol Genet 5(7):1023–1028

    Article  PubMed  Google Scholar 

  • Manfredsson FP (2016) Introduction to viral vectors and other delivery methods for gene therapy of the nervous system. Methods Mol Biol 1382:3–18

    Article  PubMed  Google Scholar 

  • Matsubara K, Aoyama K, Suno M, Awaya T (2002) N-Methylation underlying Parkinson’s disease. Neurotoxicol Teratol 24(5):593–598

    Article  CAS  PubMed  Google Scholar 

  • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189(2):211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura S, Sugimoto T, Murata S, Sugawara Y, Iwasaki H (1985) Stereochemistry of biopterin cofactor and facile methods for determination of the stereochemistry of a biologically active 5,6,7,8-terahydropterin. J Biochem 98(5):1341–1348

    CAS  PubMed  Google Scholar 

  • Mazzulli JR, Mishizen AJ, Giasson BI, Lynch DR, Thomas SA, Nakashima A, Nagatsu T, Ota A, Ischiopoulos H (2006) Cytosolic catechols inhibit α-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J Neurosci 26(39):10068–10078

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Review 21(2):195–218

    Article  CAS  Google Scholar 

  • Messer CJ, Son JH, Joh TH, Beck KD, Nestler EJ (1999) Regulation of tyrosine hydroxylase transcription in ventral midbrain by glial cell line-derived neurotrophic factor. Synapse 34(3):241–243

    Article  CAS  PubMed  Google Scholar 

  • Michel TM, Käsbauer L, Gsell W, Jecel J, Sheldrick AJ, Cortese M, Nickl-Jackschat T, Grünblatt E, Riederer P (2014) Aldehyde dehydrogenase 2 in sporadic Parkinson’s disease. Parkinsonism Relat Disord 20(Suppl 1):S68–S72

    Article  PubMed  Google Scholar 

  • Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson’s disease. Neuron 90(4):675–691

    Article  CAS  PubMed  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163(3):1450–1455

    Article  CAS  PubMed  Google Scholar 

  • Mizuno Y, Kondo T, Kuno S, Nomoto N, Yanagisawa N (2010) Early addition of selegiline to l-Dopa treatment is beneficial for patients with Parkinson disease. Clin Neuropharmacol 33(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137(2):120–123

    Article  CAS  PubMed  Google Scholar 

  • Mockus SM, Yohrling GJ 4th, Vrana KE (1998) Tyrosine hydroxylase and tryptophan hydroxylase do not form heterotetramers. J Mol Neurosci 10(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada N, Kiuchi K, Kojima K, Kondo T, Narabayashi H, Rausch D, Riederer P, Jellinger K, Nagatsu T (1988a) Homo-specific activity (activity per enzyme protein) of tyrosine hydroxylase increases in parkinsonian brain. J Neural Transm 72(1):77–82

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Kojima K, Inagaki H, Kondo T, Narabayashi H, Arai T, Teradaira R, Fujita K, Kiuchi K, Nagatsu T (1988b) Sandwich enzyme immunoassay of dopamine beta-hydoxylase in cerebrospinal fluid from control and Parkinsonian patients. Neurochem Int 12(2):187–191

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Kojima K, Kiuchi K, Nagatsu T (1988c) Effects of systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to mice on tyrosine hydroxylase, l-3,4-dihydroxyphenylalanine decarboxylase, dopamine β-hydroxylase, and monoamine oxidase activities in the striatum and hypothalamus. J Neurochem 50(4):1053–10556

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-alpha (TNF-factor) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165(1–2):208–210

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1β, IL-2, IL-4, IL-6 and transforming growth factor-alpha are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211(1):13–16

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (1999) Brain derived neurotrophic factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Lett 270(1):45–48

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (2000) Caspase activities and tumor necrosis factor receptor R1 level are elevated in the substantia nigra in Parkinson’s disease. J Neural Transm 107(3):335–341

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Kondo T, Mizuno Y, Nagatsu T (2007) p53 protein, interferon-γ, and NF-κB levels are elevated in the parkinsonian brain. Neurosci Lett 414(1):94–97

    Article  CAS  PubMed  Google Scholar 

  • Morizane A, Doi D, Kikuchi T, Okita K, Hotta A, Kawasaki T, Hayashi T, Onoe H, Shiina T, Yamanaka S, Takahashi J (2013) Direct comparison of autologous and allogenic transplantation of iPSC-derived neural cells in the brain of a non-human primate. Stem Cell Rep 1(4):283–292

    Article  CAS  Google Scholar 

  • Muramatsu S, Fujimoto K, Ikeguchi K, Shizuma N, Kawasaki K, Ono F, Shen Y, Wang LJ, Mizukami H, Kume A, Matsumura M, Nagatsu I, Urano F, Ichinose H, Nagatsu T, Terano K, Nakano I, Ozawa K (2002) Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther 13(3):345–354

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu S, Fujimoto K, Kano S (2010) A phase 1 study of aromatic l-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18(9):1731–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata M, Horiuchi E, Kanazawa I (2001) Zonisamide has beneficial effects on Parkinson’s disease patients. Neurosci Res 41(4):397–399

    Article  CAS  PubMed  Google Scholar 

  • Murata M, Hasegawa K, Kanazawa I (2007) The Japan Zonisamide on PD Study Group: zonisamide improves motor function in Parkinson disease. A randomized, double-blind study. Neurology 68(1):45–50

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T (1973) Biochemistry of catecholamines. University of Tokyo Press, Tokyo, University Park Press, Baltimore

  • Nagatsu T (1977) Dopamine β-hydroxylase in blood and cerebrospinal fluid. Trends Biochem Sci 2(10):217–219

    Article  CAS  Google Scholar 

  • Nagatsu T (1991) Genes for human catecholamine-synthesizing enzymes. Neurosci Res 12(2):315–345

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T (1995) Tyrosine hydroxylase: human isoforms, structure and regulation on physiology and pathology. In: Apps DK, Tipton KF (eds) Essays in biochemistry, vol 30. Portland Press, London, pp 15–35

    Google Scholar 

  • Nagatsu T (1997) Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci Res 29(2):99–111

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T (2002) Amine-related neurotoxins in Parkinson’s disease: past, present and future. Neurotoxicol Teratol 24(5):565–569

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T (2004) Progress in monoamine oxidase (MAO) research in relation to genetic engineering. Neuro Toxicol 25(1–2):11–20

    CAS  Google Scholar 

  • Nagatsu T (2006) The catecholamine system in health and disease: relation to tyrosine 3-monooxygenase and other catecholamine-synthesizing enzymes. Proc Jpn Acad Ser B 82(10):388–415

    Article  CAS  Google Scholar 

  • Nagatsu T (2009) Simple photometric assay of dopamine β-hydroxylase in human blood useful in clinical study. Clin Chem 55(1):193–194

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Ichinose H (1991) Comparative studies on the structure of human tyrosine hydroxylase with those of the enzyme of various mammals. Comp Biochem Physiol 98C(1):203–210

    CAS  Google Scholar 

  • Nagatsu T, Ichinose H (1999) Molecular biology of catecholamine-related enzymes in relation to Parkinson’s disease. Cell Mol Neurobiol 19(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role of cytokines. Curr Phamac Des 11(8):999–1016

    Article  CAS  Google Scholar 

  • Nagatsu T, Sawada M (2006a) Cellular and molecular mechanisms of Parkinson’s disease. Cell Mol Neurobiol 26(4–6):781–801

    CAS  Google Scholar 

  • Nagatsu T, Sawada M (2006b) Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson’s disease: possible implication of glial cells. J Neural Transm Suppl 71:53–65

    Article  Google Scholar 

  • Nagatsu T, Sawada M (2007) Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm Suppl 72:113–120

    Article  Google Scholar 

  • Nagatsu T, Sawasa M (2009) l-dopa therapy for Parkinson’s disease: past, present, and future. Parkinsonism Relat Disord 15(1):S3–S8

    Article  Google Scholar 

  • Nagatsu T, Udenfriend S (1972) Photometric assay of human dopamine β-hydroxylase activity in human blood. Clin Chem 18(9):980–983

    CAS  PubMed  Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964a) A rapid and simple radioassay for tyrosine hydroxylase activity. Anal Biochem 9(1):122–126

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964b) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239(9):2910–2917

    CAS  PubMed  Google Scholar 

  • Nagatsu T, Mizutani K, Nagatsu I, Matsuura S, Sugimoto T (1972) Pteridine as cofactor or inhibitor of tyrosine hydroxylase. Biochem Pharmacol 21(14):1945–1953

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Kato T, Numata Y, Ikuta K, Sano M, Nagatsu I, Kondo Y, Inagaki S, Iizuka R, Hori A, Narabayashi H (1977) Phenylethanolamine N-methyltransferase activity and other enzymes of catecholamine metabolism inhuman brain. Clin Chim Acta 75(2):221–232

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu I, Karasawa N, Kondo Y, Inagaki S (1979a) Immunocytochemical localization of tyrosine hydroxylase, dopamine-β-hydroxylase and phenylethanolamine-N-methyltransferase in the adrenal glands of the frog and rat by a peroxidase-antiperoxidase method. Histochemistry 64(2):131–144

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Oka K, Kato T (1979b) Highly sensitive assay for tyrosine hydroxylase activity by high-performance liquid chromatography. J Chromatogr B 163(3):247–252

    Article  CAS  Google Scholar 

  • Nagatsu I, Ikemoto K, Kitahama K, Nishimura A, Ichinose H, Nagatsu T (1999) Specific localization of the guanosine triphosphate (GTP) cyclohydrolase I-immunoreactivity in the human brain. J Neural Transm 106(7–8):607–617

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines in Parkinson’s disease. J Neural Transm Suppl 58:143–151

    Google Scholar 

  • Nagatsu T, Takahashi A, Yanagisawa N, Mizuno Y, Kondo T, Takahashi R, Mezaki T, Riederer C, Riederer P (eds) (2014) From east to west: pioneers in Parkinson’s disease in Japan. A historical overview of major achievements in research. QOL Laboratory, Tokyo, pp 1–99

    Google Scholar 

  • Nakashima A, Hayashi N, Kaneko YS, Mori K, Sabban EL, Nagatsu T, Ota A (2009) Role of N-terminus of tyrosine hydroxylase in the biosynthesis of catecholamines. J Neural Transm 116(11):1355–1362

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Kaneko YS, Kodani Y, Mori K, Nagasaki H, Nagatsu T, Ota A (2013) Intracellular stability of tyrosine hydroxylase: phosphorylation and protease digestion of the enzyme. In: Eiden L (ed) Advanced pharmacology, vol 68. Academic Press, Burlington, pp 3–13

    Google Scholar 

  • Naoi M, Maruyama Y, Akao Y, Yi H (2002) Dopamine-derived N-mehyl-(R)-salsolinol. Its role in Parkinson’s disease. Neurotoxicol Teratol 24(5):579–591

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Riederer P, Maruyama W (2016) Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: genetic and environmental factors involved in type A MAO expression. J Neural Transm 123:91–106

    Article  CAS  PubMed  Google Scholar 

  • Narabayashi H, Kondo T, Hayashi A, Suzuki T, Nagatsu T (1981) l-threo-3,4-dihydroxyphenylserine treatment for akinesia and freezing of parkinsonism. Proc Jpn Acad Ser B 57:351–354

    Article  Google Scholar 

  • Narabayashi H, Nakanishi T, Yoshida M, Yanagisawa N, Mizuno Y, Kanazawa K, Kondo T (1987) The therapeutic effects of l-threo-DOPS in Parkinson’s disease. Clin Eval 15(3):423–457

    Google Scholar 

  • Nishii K, Matsushita N, Sawada H, Sano H, Noda Y, Mamiya T, Nabeshima T, Nagatsu I, Hata T, Kiuchi K, Yoshizato H, Nakashima K, Nagatsu T, Kobayashi K (1998) Motor and learning dysfunctions during postnatal development in mice defective in dopamine neuronal transmission. J Neurosci Res 54(4):450–464

    Article  CAS  PubMed  Google Scholar 

  • O’Malley KL, Anhalt MJ, Martin BM, Kalsoe JR, Winfield SL, Ginns EI (1987) Isolation and characterization of the human tyrosine hydroxylase gene: identification of 5′-alternative splice sites responsible for multiple mRNAs. Biochemistry 26(22):6910–6914

    Article  PubMed  Google Scholar 

  • Ohye T, Ichinose H, Ogawa M, Yoshida M, Nagatsu T (1995) Alterations in multiple tyrosine hydroxylase mRNA in the substantia nigra, locus coeruleus and adrenal gland of MPTP-treated parkinsonian monkeys. Neurodegeneration 4(1):81–85

    Article  CAS  PubMed  Google Scholar 

  • Ohye T, Ichinose H, Yoshizawa T, Kanzawa I, Nagatsu T (2001) A new splicing variant for human tyrosine hydroxylase in the adrenal medulla. Neurosci Lett 312(3):157–160

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Yamanaka S (2014) iPS cell technologies: significance and applications to CNS regeneration and disease. Mol Brain 7:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozaki N, Nakahara D, Mogi M, Harada M, Kiuchi K, Kaneda N, Miura Y, Kasahara Y, Nagatsu T (1988) Inactivation of tyrosine hydroxylase in rat striatum by 1-methy-4-phenylpyridinium ion. Neurosci Lett 85(2):228–232

    Article  CAS  PubMed  Google Scholar 

  • Palfi S, Grruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J, Kelleher M, Deeley S, Iwamuro H, Lefaucheur JP, Thiriez C, Fenelon G, Lucas C, Brugières P, Grabriel I, Abhay K, Drout X, Tani N, Kas A, Ghaleh B, Le Corvoisier P, Dolphin P, Breen DP, Mason S, Guzman NV, Mazarakis ND, Radcliffe PA, Harrop R, Kingsman SM, Rascol O, Naylor S, Barker RA, Hantraye P, Remy P, Cessaro P, Mitrophanous KA (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383(9923):1138–1146

    Article  CAS  PubMed  Google Scholar 

  • PD MED Collaborative Group (2014) Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, programmatic randomized trial. Lancet 384(9949):1196–1205

    Article  CAS  Google Scholar 

  • Pifl C, Rajput A, Reither H, Blesa J, Cavada C, Obeso JA, Rajput A, Hornykiewicz O (2014) Is Parkinson’s disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum. J Neurosci 34(24):8210–8218

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s disease and Alzheimer’s disease brain. Neurology 38(8):1285–1291

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Deheijia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenrous ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos Johnson WG, Lazzarini AM, Duvoiosin RC, DiIrio G, Golbe LI, Nussbaum RL (1997) Muation in the alpha-synuclein gene identified in familial Parkinson’s disease. Science 276(5321):2045–2047

    Article  CAS  PubMed  Google Scholar 

  • Puig M, Bartholini G, Pletscher P (1974) Formation of noradrenaline in the rat brain in from the four isomers of 3,4-dihydroxyphenylsrine. Naunyn-Schmiedberg’s Arch Pharm 281(4):443–446

    Article  CAS  Google Scholar 

  • Rausch WD, Hirata Y, Nagatsu T, Riederer P, Jellinger K (1988) Tyrosine hydroxylase activity in caudate ncleus from Parkinson’s disease: effects of iron and phosphorylating agents. J Neurochem 50(1):202–208

    Article  CAS  PubMed  Google Scholar 

  • Reichmann H, Riederer P (1989) Biochemishe Analyse der Atmungskettenkomplex verschiedener Hirnregionen von Patienten mit M. Parkinson. Symposium zu Morbus Parkinson und andere Basalganglienkrankungen, Ministerium für Forschung und Technologie (BMBF), Bad Kissingen (Germany): 1.2.6. p44

  • Riederer P, Youdim MB, Mandel S, Gerlach M, Grünblatt E (2008) Genomic aspects of sporadic Parkinson’s disease. Parkinsonism Relat Disord 14(Suppl 2):S88–S91

    Article  PubMed  Google Scholar 

  • Rush RA, Thomas PE, Nagatsu T, Udenfriend D (1974) Comparison of human serum dopamine β-hydroxylase levels by radioimmunoassay and enzyme activity. Proc Natl Acad Sci USA 71(3):872–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabban EL, Hebert MA, Liu X, Nankova B, Serova L (2004a) Differential effects of stress on gene transcription factors in catecholamine systems. Ann N Y Acad Sci 1032:130–140

    Article  CAS  PubMed  Google Scholar 

  • Sabban EL, Nankova BB, Serova LI, Kvetnansky R, Liu X (2004b) Molecular regulation of gene expression of cathcholamine biosynthetic enzymes by stress: sympathetic ganglia versus adrenal medulla. Ann N Y Acad Sci 1018:370–377

    Article  CAS  PubMed  Google Scholar 

  • Salvatore MF, Disbrow EA, Emborg ME (2014) Peripheral and cognitive signs: delineating the significance of impaired catecholamine metabolism in Parkinson’s disease progression. J Neurochem 131(2):129–133

    Article  CAS  PubMed  Google Scholar 

  • Sano A (2000) Biochemistry of the extrapyramidal system. Parkinsonism Relat Disord 6:3-6 (original: Sano I (1960) Shinkei Kenkyu No Shinpo (Japanese), Advances in Neurological Sciences, vol 5, pp 42–48. ISSN:0001-8724

  • Sano I, Gamo T, Kakimoto Y, Taniguchi K, Takesada M, Nishinuma K (1959) Distribution of catechol compounds in human brain. Biochim Biopys Acta 32:586–587

    Article  CAS  Google Scholar 

  • Sawada M, Imamura K, Hashizume Y, Nagatsu T (2007) Role of cytokines in inflammatory process in Parkinson’s disease: interaction between dopaminergic neurons and microglia. CNS Drugs 1:3–10

    Google Scholar 

  • Schapira AHV, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 333(8649):1269

    Article  Google Scholar 

  • Schwab RS, Amador LV, Lettvin JY (1951) Apomorphine in Parkinson’s disease. Trans Am Neurol Assoc 56:251–253

    CAS  PubMed  Google Scholar 

  • Shaltouki A, Sivapatham R, Pei Y, Gerencser AA, Momčilović O, Rao MS, Zeng X (2015) Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem Cell Rep 4(5):847–859

    Article  CAS  Google Scholar 

  • Shen Y, Muramatsu S, Ikeguchi K, Fujimoto K, Fan DS, Ogawa K, Urabe M, Kume A, Nagatsu I, Urano F, Suzuki T, Ichinose H, Nagatsu T, Monahan J, Nakano I, Ozawa K (2000) Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, and GTP cyclohydrolase I for gene therapy. Hum Gene Ther 11:1509–1519

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet 25(3):302–305

    Article  CAS  PubMed  Google Scholar 

  • Sian-Hülsmann J, Mandel S, Youdim MB, Riederer P (2011) The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem 118(6):939–957

    Article  PubMed  CAS  Google Scholar 

  • Spector S, Gordon R, Sjoerdsma A, Udenfriend S (1967) End product inhibition of tyrosine hydroxylase as a possible mechanism of regulation of norepinephrine synthesis. Pharmacol Rev 3(6):549–555

    CAS  Google Scholar 

  • Sumi-Ichinose C, Ichinose H, Takahashi E, Hori T, Nagatsu T (1992) Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic l-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis. Biochemistry 31(8):2229–2238

    Article  CAS  PubMed  Google Scholar 

  • Sumi-Ichinose C, Hasegawa S, Ichinose H, Sawada H, Kobayashi K, Sakai M, Fujii T, Nomura T, Nagatsu I, Hagino Y, Fujita K, Nagatsu T (1995) Analysis of alternative promoters that regulate tissue-specific expression of human aromatic l-amino acid decarboxylase. J Neurochem 64(2):514–524

    Article  CAS  PubMed  Google Scholar 

  • Sumi-Ichinose C, Urano F, Kuroda R, Ohye T, Kojima M, Tazawa M, Shiraishi H, Hagino Y, Nagatsu T, Nomura T, Ichinose H (2001) Catecholamine and serotonin are differentially regulated by tetrahydrobiopterin. A study from 6-pyruvoyltetrahydropterin knockout mice. J Biol Chem 276(44):10062–10071

    Article  Google Scholar 

  • Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N (2005) Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 115(1):102–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 136(4):663–676

    Article  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 13(5):861–872

    Article  CAS  Google Scholar 

  • Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37(3):510–518

    Article  CAS  PubMed  Google Scholar 

  • Tekin I, Roskoski R Jr, Carkaci-Salli N, Vrana KE (2014) Complex molecular regulation of tyrosine hydroxylase. J Neural Transm 121(12):1451–1481

    Article  CAS  PubMed  Google Scholar 

  • Thöny B, Auerbach G, Blau N (2000) Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 347(1):1–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Udenfriend S (1966) Tyrosine hydroxylase. Pharmacol Rev 18(1):43–51

    CAS  PubMed  Google Scholar 

  • Udenfriend S, Zalzman-Nirenberg P, Nagatsu T (1965) Inhibitors of purified beef adrenal tyrosine hydroxylase. Biochem Pharmacol 14(5):837–845

    Article  CAS  PubMed  Google Scholar 

  • Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DJ, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160

    Article  CAS  PubMed  Google Scholar 

  • van den Heuvel LP, Luiten B, Smeitink JA, de Rijk-van Andel JF, Hyland K, Steenbergen-Spanjers GC, Janssen RJ, Wevers RA (1998) A common point mutation in the tyrosine hydroxylase gene in autosomal recessive l-DOPA-responsive dystonia in the Dutch population. Hum Genet 102(6):644–646

    Article  PubMed  Google Scholar 

  • von Euler US (1946) The presence of a substance with sympathin E properties in spleen extracts. Acta Physiol Scand 11(2–3):168–186

    Article  Google Scholar 

  • Vrana KE, Walker SJ, Rucker P, Liu X (1994) A carboxyl terminal leucine zipper is required for tyrosine hydroxylase formation. J Neurochem 63(6):2014–2020

    Article  CAS  PubMed  Google Scholar 

  • Watanabe D, Inokawa H, Hashimoto K, Suzuki N, Kano M, Shigemoto R, Hirano T, Toyama K, Kaneko S, Yokoi M, Moriyoshi K, Suzuki M, Kobayashi K, Nagatsu T, Kreitman RJ, Pastan I, Nakanishi S (1998) Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell 95(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Youdim BH, Riederer P (1993) The relevance of glial monoamine oxidase-B and polyamines to the action of selegiline in Parkinson’s disease. Mov Disord 8(Suppl 1):S8–S13

    Article  PubMed  Google Scholar 

  • Youdim BH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7(4):295–309

    Article  CAS  PubMed  Google Scholar 

  • Zabetian CP, Anderson GM, Buxbaum SG, Elston RC, Ichinose H, Nagatsu T, Kim KS, Kim CH, Malison RT, Gelerntner J, Cubells JF (2001) A quantitative-trait analysis of human plasma dopamine β-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Hum Genet 68(2):515–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou QY, Palmiter RD (1995) Dopamine deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83(7):1197–1209

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q-Y, Quaife CJ, Palmiter RD (1995) Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse development. Nature 374:640–643

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all of our former colleagues and international collaborators described in References, especially Drs. Makoto Sawada, Kazuto Kobayashi, Hiroshi Ichinose, Chiho Sumi-Ichinose, Toshikuni Sasaoka, Makio Mogi, Takahide Nomura, Akira Ota, and Akira Nakashima, as well as Dr. Peter Riederer for their collaboration over these many years. The main parts of the work were supported by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan and from the Ministry of Health, Labor, and Welfare of Japan. In the light of their encouragement to us for over 50 years to promote our research in the field of catecholamines, we would like to dedicate this manuscript to the memory of the late Dr. Sidney Udenfriend of the National Institutes of Health, Roche Institute of Molecular Biology and Drew University, the late Dr. Julius Axelrod of the National Institutes of Health, and the late Dr. Keisuke Fujita of Fujita Health University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiharu Nagatsu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagatsu, T., Nagatsu, I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson’s disease (PD): historical overview and future prospects. J Neural Transm 123, 1255–1278 (2016). https://doi.org/10.1007/s00702-016-1596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-016-1596-4

Keywords

Navigation