Skip to main content
Log in

Does prior sepsis alter subsequent circadian and sickness behaviour response to lipopolysaccharide treatment in mice?

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Previous data has shown that prior history of immune challenge may affect central and behavioural responses to subsequent immune challenge, either leading to exaggerated responses via priming mechanisms or lessened responses via endotoxin tolerance. In this set of experiments we have examined how previously lipopolysaccharide (LPS)-induced sepsis shapes the response to subsequent treatment with lower dose LPS. After treatment with LPS (5 mg/kg) or saline mice were allowed to recover for 3–4 months before being challenged with a lower dose of LPS (100 μg/kg) for assessment of sickness behaviours. Performance on the open field test and the tail suspension test was assessed, and no evidence was found that prior sepsis altered sickness or depressive-like behaviour following LPS treatment. We then examined the responsiveness of the circadian system of mice to LPS. We found that in control animals, LPS induced a significant phase delay of the behavioural rhythm and that this was not the case in post-septic animals (4–6 weeks after sepsis), indicating that prior sepsis alters the responsivity of the circadian system to subsequent immune challenge. We further assessed the induction of the immediate early genes c-Fos and EGR1 in the hippocampus and the suprachiasmatic nucleus (SCN; the master circadian pacemaker) by LPS in control or post-septic animals, and found that post-septic animals show elevated expression in the hippocampus but not the SCN. These data suggest that previous sepsis has some effect on behavioural and molecular responses to subsequent immune challenge in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369:840–851

    Article  CAS  PubMed  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beynon AL, Coogan AN (2010) Diurnal, age, and immune regulation of interleukin-1β and interleukin-1 type 1 receptor in the mouse suprachiasmatic nucleus. Chronobiol Int 27:1546–1563

    Article  CAS  PubMed  Google Scholar 

  • Bonow RH, Aïd S, Zhang Y, Becker KG, Bosetti F (2009) The brain expression of genes involved in inflammatory response, the ribosome, and learning and memory is altered by centrally injected lipopolysaccharide in mice. Pharmacogenomics J 9:116–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bossù P, Cutuli D, Palladino I, Caporali P, Angelucci F, Laricchiuta D, Gelfo F, De Bartolo P, Caltagirone C, Petrosini L (2012) A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain protein levels of TNF-α and IL-18. J Neuroinflammation 9:101

    Article  PubMed Central  PubMed  Google Scholar 

  • Calsavara AC, Rodrigues DH, Miranda AS, Costa PA, Lima CX, Vilela MC, Rachid MA, Teixeira AL (2013) Late anxiety-like behavior and neuroinflammation in mice subjected to sublethal polymicrobial sepsis. Neurotox Res 24:103–108

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Buchanan JB, Sparkman NL, Godbout JP, Freund GG, Johnson RW (2008) Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain Behav Immun 22:301–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coogan AN, Wyse CA (2008) Neuroimmunology of the circadian clock. Brain Res 1232:104–112

    Article  CAS  PubMed  Google Scholar 

  • Coogan AN, Schutová B, Husung S, Furczyk K, Baune BT, Kropp P, Häßler F, Thome J (2013) The circadian system in Alzheimer’s disease: disturbances, mechanisms, and opportunities. Biol Psychiatry 74:333–339

    Article  PubMed  Google Scholar 

  • Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90

    Article  PubMed  Google Scholar 

  • Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25:9275–9284

    Article  CAS  PubMed  Google Scholar 

  • Dantzer R (2001) Cytokine-induced sickness behavior: mechanisms and implications. Ann N Y Acad Sci 933:222–234

    Article  CAS  PubMed  Google Scholar 

  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis S, Bozon B, Laroche S (2003) How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res 142:17–30

    Article  CAS  PubMed  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  CAS  PubMed  Google Scholar 

  • Frenois F, Moreau M, O’Connor J, Lawson M, Micon C, Lestage J, Kelley KW, Dantzer R, Castanon N (2007) Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 32:516–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gavilán MP, Castaño A, Torres M, Portavella M, Caballero C, Jiménez S, García-Martínez A, Parrado J, Vitorica J, Ruano D (2009) Age-related increase in the immunoproteasome content in rat hippocampus: molecular and functional aspects. J Neurochem 108:260–267

    Article  PubMed  Google Scholar 

  • Griffin EW, Skelly DT, Murray CL, Cunningham C (2013) Cyclooxygenase-1-dependent prostaglandins mediate susceptibility to systemic inflammation-induced acute cognitive dysfunction. J Neurosci 33:15248–15258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL (1998) Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res 780:294–303

    Article  CAS  PubMed  Google Scholar 

  • Henry CJ, Huang Y, Wynne AM, Godbout JP (2009) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 23:309–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hotchkiss RS, Monneret G, Payen D (2013) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13:260–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwashyna TJ, Ely EW, Smith DM, Langa KM (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304:1787–1794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kondo S, Kohsaka S, Okabe S (2011) Long-term changes of spine dynamics and microglia after transient peripheral immune response triggered by LPS in vivo. Mol Brain 4:27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leone MJ, Marpegan L, Duhart JM, Golombek DA (2012) Role of proinflammatory cytokines on lipopolysaccharide-induced phase shifts in locomotor activity circadian rhythm. Chronobiol Int 29:715–723

    Article  CAS  PubMed  Google Scholar 

  • Marpegán L, Bekinschtein TA, Costas MA, Golombek DA (2005) Circadian responses to endotoxin treatment in mice. J Neuroimmunol 160(1–2):102–109

    Article  PubMed  Google Scholar 

  • McClung CA (2013) How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry 74:242–249

    Article  PubMed Central  PubMed  Google Scholar 

  • McCusker RH, Kelley KW (2013) Immune-neural connections: how the immune system’s response to infectious agents influences behaviour. J Exp Biol 216:84–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris M, Li L (2012) Molecular mechanisms and pathological consequences of endotoxin tolerance and priming. Arch Immunol Ther Exp (Warsz) 60:13–18

    Article  CAS  Google Scholar 

  • Norden DM, Godbout JP (2013) Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 39:19–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Callaghan EK, Anderson ST, Moynagh PN, Coogan AN (2012) Long-lasting effects of sepsis on circadian rhythms in the mouse. PLoS One 7:e47087

    Article  PubMed Central  PubMed  Google Scholar 

  • Paladino N, Leone MJ, Plano SA, Golombek DA (2010) Paying the circadian toll: the circadian response to LPS injection is dependent on the Toll-like receptor 4. J Neuroimmunol 225:62–67

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosi S, Ramirez-Amaya V, Vazdarjanova A, Worley PF, Barnes CA (2005) Wenk GL (2005) Neuroinflammation alters the hippocampal pattern of behaviorally induced Arc expression. J Neurosci 25:723–731

    Article  CAS  PubMed  Google Scholar 

  • Semmler A, Widmann CN, Okulla T, Urbach H, Kaiser M, Widman G, Mormann F, Weide J, Fliessbach K, Hoeft A, Jessen F, Putensen C, Heneka MT (2013) Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J Neurol Neurosurg Psychiatry 84:62–69

    Article  PubMed  Google Scholar 

  • Shaw KN, Commins S, O’Mara SM (2001) Lipopolysaccharide causes deficits in spatial learning in the watermaze but not in BDNF expression in the rat dentate gyrus. Behav Brain Res 124:47–54

    Article  CAS  PubMed  Google Scholar 

  • Siami S, Annane D, Sharshar T (2008) The encephalopathy in sepsis. Crit Care Clin 24:67–82

    Article  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  • Vilaplana J, Lavialle M (1999) A method to quantify glial fibrillary acidic protein immunoreactivity on the suprachiasmatic nucleus. J Neurosci Methods 88:181–187

    Article  CAS  PubMed  Google Scholar 

  • Weberpals M, Hermes M, Hermann S, Kummer MP, Terwel D, Semmler A, Berger M, Schäfers M, Heneka MT (2009) NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J Neurosci 29:14177–14184

    Article  CAS  PubMed  Google Scholar 

  • West MA, Heagy W (2002) Endotoxin tolerance: a review. Crit Care Med 30:S64–S73

    Article  CAS  Google Scholar 

  • Yirmiya R, Rosen H, Donchin O, Ovadia H (1994) Behavioral effects of lipopolysaccharide in rats: involvement of endogenous opioids. Brain Res 648:80–86

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the Health Research Board and from a John and Pat Hume Scholarship, NUI Maynooth.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Coogan.

Additional information

S. T. Anderson and E. K. O’Callaghan contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, S.T., O’Callaghan, E.K., Commins, S. et al. Does prior sepsis alter subsequent circadian and sickness behaviour response to lipopolysaccharide treatment in mice?. J Neural Transm 122 (Suppl 1), 63–73 (2015). https://doi.org/10.1007/s00702-013-1124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1124-8

Keywords

Navigation