Skip to main content

Advertisement

Log in

Aripiprazole increases NADPH level in PC12 cells: the role of NADPH oxidase

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

In aripiprazole-treated PC12 cells, we previously showed that the mitochondrial membrane potential (Δψm) was rather increased in spite of lowered cytochrome c oxidase activity. To address these inconsistent results, we focused the NADPH generation by glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway (PPP), to titrate reactive oxygen species (ROS) that results in the Δψm maintenance. G6PD may be also involved in another inconsistent result of lowered intracellular lactate level in aripiprazole-treated PC12 cells, because PPP competes glucose-6-phosphate with the glycolytic pathway, resulting in the downregulation of glycolysis. Therefore, we assayed intracellular amounts of NADPH, ROS, and the activities of the enzymes generating or consuming NADPH (G6PD, NADP+-dependent isocitrate dehydrogenase, NADP+-dependent malic enzyme, glutathione reductase, and NADPH oxidase [NOX]) and estimated glycolysis in 50 μM aripiprazole-, clozapine-, and haloperidol-treated PC12 cells. NADPH levels were enhanced only in aripiprazole-treated ones. Only haloperidol increased ROS. However, the enzyme activities did not show significant changes toward enhancing NADPH level except for the aripiprazole-induced decrease in NOX activity. Thus, the lowered NOX activity could have contributed to the aripiprazole-induced increase in the NADPH level by lowering ROS generation, resulting in maintained Δψm. Although the aforementioned assumption was invalid, the ratio of fructose-1,6-bisphosphate to fructose-6-phosphate was decreased by all antipsychotics examined. Pyruvate kinase activity was enhanced only by aripiprazole. In summary, these observations indicate that aripiprazole possibly possesses the pharmacological superiority to clozapine and haloperidol in the ROS generation and the adjustment of glycolytic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAPD:

Atypical antipsychotic drug

ACC:

Acetyl-CoA carboxylase

AMPK:

AMP-activated protein kinase

COX:

Cytochrome c oxidase

Δψm :

Mitochondrial membrane potential

DCF-DA:

2′,7′-dichlorofluorescein diacetate

DMEM:

Dulbecco’s modified Eagle’s medium

F1,6P:

Fructose-1,6-bisphosphate

F2,6P:

Fructose-2,6-bisphosphate

F6P:

Fructose-6-phosphate

G6P:

Glucose-6-phosphate

G6PD:

Glucose-6-phosphate dehydrogenase

GR:

Glutathione reductase

GSH:

Reduced form glutathione

H6PD:

Hexose-6-phosphate dehydrogenase

HPRT:

Hypoxanthine-guanine phosphoribosyltransferase

LDH:

Lactate dehydrogenase

NADP+-IDH:

NADP+-dependent isocitrate dehydrogenase

NADP+-ME:

NADP+-dependent malic enzyme

NOX:

NADPH oxidase

O ·−2 :

Superoxide

PFK1:

Phosphofructokinase-1

PFKBP:

6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase

PPi-PFK:

Pyrophosphate-dependent F6P kinase

PPP:

Pentose phosphate pathway

q-RT-PCR:

Quantitative real-time PCR

R5P:

Ribose-5-phosphate

ROS:

Reactive oxygen species

Taldo1:

Transaldolase 1

TIGAR:

TP53-induced glycolysis and apoptosis regulator

Tkt:

Transketolase

References

  • Banno K, Fujioka T, Kikuchi T, Oshiro Y, Hiyama T, Nakagawa K (1988) Studies on 2(1H)-quinolinone derivatives as neuroleptic agents I. Synthesis and biological activities of (4-Phenyl-1-piperazinyl)propoxy-2(1H)-quinolinone derivatives. Chem Pharm Bull 36:4377–4388

    Article  CAS  PubMed  Google Scholar 

  • Barja G, Herrero AJ (1998) Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J Bioenerg Biomembr 30:235–243

    Article  CAS  PubMed  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    Article  CAS  PubMed  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2007) Biochemistry. WH Freeman and Company, New York

    Google Scholar 

  • Betz A, Chance B (1965) Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control. Arch Biochem Biophys 109:585–594

    Article  CAS  PubMed  Google Scholar 

  • Blair JB, Walker RG (1984) Rat liver pyruvate kinase: influence of ligands on activity and fructose 1,6-bisphosphate binding. Arch Biochem Biophys 232:202–213

    Article  CAS  PubMed  Google Scholar 

  • Chandra FA, Buzi G, Doyle JC (2011) Glycolytic oscillations and limits on robust efficiency. Science 833:187–192

    Article  Google Scholar 

  • Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, Han JH, Metz C, Bucala R (1999) An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: Role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci USA 96:3047–3052

    Article  CAS  PubMed  Google Scholar 

  • Cui XL, Douglas JG (1997) Arachidonic acid activates c-jun N-terminal kinase through NADPH oxidase in rabbit proximal tubular epithelial cells. Proc Natl Acad Sci USA 94:3771–3776

    Article  CAS  PubMed  Google Scholar 

  • Dombrauckas JD, Santarsiero BD, Mesecar AD (2005) Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44:9417–9429

    Article  CAS  PubMed  Google Scholar 

  • El-Maghrabi MR, Claus TH, McGrane MM, Pilkis SJ (1982) Influence of phosphorylation on the interaction of effectors with rat liver pyruvate kinase. J Biol Chem 257:233–240

    CAS  PubMed  Google Scholar 

  • Haas A, Goebel W (1992) Microbial strategies to prevent oxygen-dependent killing by phagocytes. Free Radic Res Commun 16:137–157

    Article  CAS  PubMed  Google Scholar 

  • Herrero-Mendez A, Almeida A, Fernández E, Maestre C, Moncada S, Bolaños JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752

    Article  CAS  PubMed  Google Scholar 

  • Jeon S-M, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485:661–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL (1998) The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6:195–210

    Article  CAS  PubMed  Google Scholar 

  • Kato TA, Monji A, Yasukawa K, Mizoguchi Y, Horikawa H, Seki Y, Hashioka S, Han YH, Kasai M, Sonoda N, Hirata E, Maeda Y, Inoguchi T, Utsumi H, Kanba S (2011) Aripiprazole inhibits superoxide generation from phorbol-myristate-acetate (PMA)-stimulated microglia in vitro: implication for antioxidative psychotropic actions via microglia. Scizophr Res 129:172–182

    Article  Google Scholar 

  • Kawaguchi T, Veech RL, Uyeda K (2001) Regulation of energy metabolism in macrophages during hypoxia. Roles of fructose 2,6-bisphosphate and ribose 1,5-bisphosphate. J Biol Chem 276:28554–28561

    Article  CAS  PubMed  Google Scholar 

  • Kemp RG, Foe LG (1983) Allosteric regulatory properties of muscle phosphofructokinase. Mol Cell Biochem 57:147–154

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi T, Tottori K, Uwahodo Y, Hirose T, Miwa T, Oshiro Y, Morita S (1995) 7-{4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy}-3,4-dihydro-2(1H)-quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 274:329–336

    CAS  PubMed  Google Scholar 

  • Kletzien RF, Harris PK, Foellmi LA (1994) Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J 8:174–181

    CAS  PubMed  Google Scholar 

  • Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 103:7607–7612

    Article  CAS  PubMed  Google Scholar 

  • Manzano A, Rosa JL, Ventura F, Perez JX, Nadal M, Estivill X, Ambrosio S, Gil J, Bartrons R (1998) Molecular cloning, expression, and chromosomal localization of a ubiquitously expressed human 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase gene (PFKFB3). Cytogenet Cell Genet 83:214–217

    Article  CAS  PubMed  Google Scholar 

  • Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vinvent MF, Van den Berghe G, Carling D, Hue L (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Marsin AS, Bouzin C, Bertrand L, Hue L (2002) The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem 277:30778–30783

    Article  CAS  PubMed  Google Scholar 

  • Michal G (1986a) d-Glucose 6-phosphate and d-fructose 6-phosphate. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 191–198

    Google Scholar 

  • Michal G (1986b) d-Fructose 1,6-bisphosphate, dihydroxyacetone phosphate and d-glyceroaldehyde 3-phosphate. In: Bergmeyer HU (ed) Methods of Enzymatic Analysis. Academic Press, New York, pp 342–350

    Google Scholar 

  • Noh KM, Koh JY (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20:RC111

    Google Scholar 

  • Oshiro Y, Sato S, Kurahashi N, Tanaka T, Kikuchi T, Tottori K, Uwahodo Y, Nishi T (1998) Novel antipsychotic agents with dopamine autoreceptor agonist properties: synthesis and pharmacology of 7-[4-(4-Phenyl-1-piperazinyl)butoxy]-3,4-dihydro-2(1H)-quinolinone derivatives. J Med Chem 41:658–667

    Article  CAS  PubMed  Google Scholar 

  • Ota A, Nakashima A, Kaneko YS, Mori K, Nagasaki H, Takayanagi T, Itoh M, Kondo K, Nagatsu T, Ota M (2012) Effects of aripiprazole and clozapine on the treatment of glycolytic carbon in PC12 cells. J Neural Transm 119:1327–1342

    Article  CAS  PubMed  Google Scholar 

  • Ozols J (1993) Isolation and the complete amino acid sequence of lumenal endoplasmic reticulum glucose-6-phosphate dehydrogenase. Proc Natl Acad Sci USA 90:5302–5306

    Article  CAS  PubMed  Google Scholar 

  • Senesi S, Csala M, Marcolongo P, Fulceri R, Mandl J, Bánhegyi G, Benedetti A (2010) Hexose-6-phosphate dehydrogenase in the endoplasmic reticulum. Biol Chem 391:1–8

    Article  CAS  PubMed  Google Scholar 

  • Seo BB, Marella M, Yagi T, Matsuno-Yagi A (2006) The single subunit NADH dehydrogenase reduces generation of reactive oxygen species from complex I. FEBS Lett 580:6105–6108

    Article  CAS  PubMed  Google Scholar 

  • Sols A (1981) Multimodulation of enzyme activity. Curr Top Cell Regul 19:77–101

    CAS  PubMed  Google Scholar 

  • Suzukawa K, Miura K, Mitsushita J, Resau J, Hirose K, Crystal R, Kamata T (2000) Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J Biol Chem 275:13175–13178

    Article  CAS  PubMed  Google Scholar 

  • Takami G, Ota M, Nakashima A, Kaneko YS, Mori K, Nagatsu T, Ota A (2010) Effects of atypical antipsychotics and haloperidol on PC12 cells: only aripiprazole phosphorylates AMP-activated protein kinase. J Neural Transm 117:1139–1153

    Article  CAS  PubMed  Google Scholar 

  • Tammariello SP, Quinn MT, Estus S (2000) NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci 20:RC53

    Google Scholar 

  • Termonia Y, Ross J (1981) Oscillations and control features in glycolysis: numerical analysis of a comprehensive model. Proc Natl Acad Sci USA 78:2952–2956

    Article  CAS  PubMed  Google Scholar 

  • Tornheim K, Lowenstein JM (1976) Control of phosphofructokinase from rat skeletal muscle. Effects of fructose diphosphate, AMP, ATP, and citrate. J Biol Chem 251:7322–7328

    CAS  PubMed  Google Scholar 

  • Underwood AH, Newsholme EA (1965) Properties of phosphofructokinase from rat liver and their relation to the control of glycolysis and gluconeogenesis. Biochem J 95:868–875

    CAS  PubMed  Google Scholar 

  • Uyeda K (1979) Phosphofructokinase. Adv Enzymol Relat Areas Mol Biol 48:193–124

  • Van Schaftingen E (1987) Fructose 2,6-bisphosphate. Adv Enzymol Relat Areas Mol Biol 59:315–395

    PubMed  Google Scholar 

  • Van Schaftingen E, Lederer B, Bartrons R, Hers HG (1982) A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem 129:191–195

    Article  PubMed  Google Scholar 

  • Vaz AR, Delgado-Esteban M, Brito MA, Bolaños JP, Brites D, Almeida A (2010) Bilirubin selectively inhibits cytochrome c oxidase activity and induces apoptosis in immature cortical neurons: assessment of the protective effects of glycoursodeoxycholic acid. J Neurochem 112:56–65

    Article  CAS  PubMed  Google Scholar 

  • Vora S, Oskam R, Staal GE (1985) Isoenzymes of phosphofructokinase in the rat: demonstration of the three non-identical subunits by biochemical, immunochemical and kinetic studies. Biochem J 229:333–341

    CAS  PubMed  Google Scholar 

  • Wu R, Racker E (1959) Regulatory mechanism in carbohydrate metabolism: IV Pasteur effect and crabtree effect in ascites tumor cells. J Biol Chem 234:1036–1041

    CAS  PubMed  Google Scholar 

  • Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, Brock E, Siow D, Wattenberg B, Telang S, Chesney J (2009) Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem 284:24223–24232

    Article  CAS  PubMed  Google Scholar 

  • Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J, Hezel AF, Perry SR, Hu J, Gan B, Xiao Y, Asara JM, Weissleder R, Wang YA, Chin L, Cantley LC, DePinho RA (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants-in-aid from Fujita Health University to AO.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Ota.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PPT 158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagasaki, H., Nakashima, A., Kaneko, Y.S. et al. Aripiprazole increases NADPH level in PC12 cells: the role of NADPH oxidase. J Neural Transm 121, 91–103 (2014). https://doi.org/10.1007/s00702-013-1075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1075-0

Keywords

Navigation