Skip to main content
Log in

Subchronic elevation of brain kynurenic acid augments amphetamine-induced locomotor response in mice

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The neuromodulating tryptophan metabolite kynurenic acid (KYNA) is increased in the brain of patients with schizophrenia. In the present study we investigate the spontaneous locomotor activity as well as the locomotor response to d-amphetamine [5 mg/kg, administered intraperitoneal (i.p.)] after increasing endogenous levels of brain KYNA in mice by acute (10 mg/kg, i.p., 60 min) or subchronic (100 mg/kg i.p., twice daily for 6 days) pretreatment with the blood–brain crossing precursor, l-kynurenine. We found that an acute increase in the brain KYNA levels caused increased corner time and percent peripheral activity but did not change the d-amphetamine-induced locomotor response. In contrast, subchronic elevation of KYNA did not change the spontaneous locomotor activity but produced an exaggerated d-amphetamine-induced hyperlocomotion. These results cohere with clinical studies of patients with schizophrenia, where a potentiated DA release associated with exacerbation of positive symptoms has been observed following d-amphetamine administration. Present results further underscore KYNA as a possible mediator of the aberrant dopaminergic neurotransmission seen in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott, A, Roberts, BM, Turner, L, Campbell, DW, Schaffer, CL, Campbell, BM, Seymour, PA, Williams, GV, Castner, SA (2010) Inhibition of kynurenine aminotransferase II (KATII) protects against ketamine-induced cognitive impairment and improves spatial working memory. Neuroscience Meeting Planner (Society for Neuroscience, San Diego); Program no 472.18 (online). Available from URL: http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=8a4c8a45-e785-469e-b151-2e92be77432a&cKey=dbeec220-606a-4a7e-a2c3-b11af317777a&mKey={E5D5C83F-CE2D-4D71-9DD6-FC7231E090FB}

  • Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155(6):761–767

    PubMed  CAS  Google Scholar 

  • Adler CM, Malhotra AK, Elman I, Goldberg T, Egan M, Pickar D, Breier A (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry 156(10):1646–1649

    PubMed  CAS  Google Scholar 

  • Allen RM, Young SJ (1978) Phencyclidine-induced psychosis. Am J Psychiatry 135(9):1081–1084

    PubMed  CAS  Google Scholar 

  • Amori L, Guidetti P, Pellicciari R, Kajii Y, Schwarcz R (2009) On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo. J Neurochem 109(2):316–325

    Article  PubMed  CAS  Google Scholar 

  • Anand R, Peng X, Ballesta JJ, Lindstrom J (1993) Pharmacological characterization of alpha-bungarotoxin-sensitive acetylcholine receptors immunoisolated from chick retina: contrasting properties of alpha 7 and alpha 8 subunit-containing subtypes. Mol Pharmacol 44(5):1046–1050

    PubMed  CAS  Google Scholar 

  • Bender DA, McCreanor GM (1982) The preferred route of kynurenine metabolism in the rat. Biochim Biophys Acta 717(1):56–60

    Article  PubMed  CAS  Google Scholar 

  • Beninger RJ, Beuk J, Banasikowski TJ, van Adel M, Boivin GA, Reynolds JN (2010) Subchronic phencyclidine in rats: alterations in locomotor activity, maze performance, and GABA (A) receptor binding. Behav Pharmacol 21(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol 154(1):85–87

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94(6):2569–2574

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Adler CM, Weisenfeld N, Su TP, Elman I, Picken L, Malhotra AK, Pickar D (1998) Effects of NMDA antagonism on striatal dopamine release in healthy subjects: application of a novel PET approach. Synapse 29(2):142–147

    Article  PubMed  CAS  Google Scholar 

  • Capone G, Wu H-Q, Albuquerque EX, Schwarcz R (2008) Distinct effects of prolonged l-kynurenine treatment on extracellular glutamate and dopamine levels in the rat striatum. Neuroscience Meeting Planner Washington, DC: Society for Neuroscience; Program no 338.17 (online). Available from URL: http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=d92d9b35-8184-4771-8eea-547828dcbc17&cKey=981adb9a-4966-4ef3-9caa-d81084dd7b9f&mKey={AFEA068D-D012-4520-8E42-10E4D1AF7944}

  • Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, Moroni F (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 13(11):2141–2147

    Article  PubMed  CAS  Google Scholar 

  • Chess AC, Bucci DJ (2006) Increased concentration of cerebral kynurenic acid alters stimulus processing and conditioned responding. Behav Brain Res 170(2):326–332

    Article  PubMed  CAS  Google Scholar 

  • Chess AC, Simoni MK, Alling TE, Bucci DJ (2007) Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull 33(3):797–804

    Article  PubMed  Google Scholar 

  • Chess AC, Landers AM, Bucci DJ (2009) l-kynurenine treatment alters contextual fear conditioning and context discrimination but not cue-specific fear conditioning. Behav Brain Res 201(2):325–331

    Article  PubMed  CAS  Google Scholar 

  • Connor TJ, Starr N, O’Sullivan JB, Harkin A (2008) Induction of indolamine 2, 3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma? Neurosci Lett 441(1):29–34

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT (2006) Glial metabolites of tryptophan and excitotoxicity: coming unglued. Exp Neurol 197(1):4–7

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Engberg G (2002) Increased phasic activity of dopaminergic neurones in the rat ventral tegmental area following pharmacologically elevated levels of endogenous kynurenic acid. Acta Physiol Scand 175(1):45–53

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Blennow K, Nordin C, Skogh E, Lindstrom LH, Engberg G (2001a) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313(1–2):96–98

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Oberg H, Mathe JM, Engberg G (2001b) Pharmacological elevation of endogenous kynurenic acid levels activates nigral dopamine neurons. Amino Acids 20(4):353–362

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Schwieler L, Emanuelsson C, Geyer M (2004) Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry 56(4):255–260

    Article  PubMed  CAS  Google Scholar 

  • Foster AC, White RJ, Schwarcz R (1986) Synthesis of quinolinic acid by 3-hydroxyanthranilic acid oxygenase in rat brain tissue in vitro. J Neurochem 47(1):23–30

    Article  PubMed  CAS  Google Scholar 

  • French ED (1994) Phencyclidine and the midbrain dopamine system: electrophysiology and behavior. Neurotoxicol Teratol 16(4):355–362

    Article  PubMed  CAS  Google Scholar 

  • French ED, Mura A, Wang T (1993) MK-801, phencyclidine (PCP), and PCP-like drugs increase burst firing in rat A10 dopamine neurons: comparison to competitive NMDA antagonists. Synapse 13(2):108–116

    Article  PubMed  CAS  Google Scholar 

  • Gal EM, Sherman AD (1978) Synthesis and metabolism of l-kynurenine in rat brain. J Neurochem 30(3):607–613

    Article  PubMed  CAS  Google Scholar 

  • Ganong AH, Cotman CW (1986) Kynurenic acid and quinolinic acid act at N-methyl-d-aspartate receptors in the rat hippocampus. J Pharmacol Exp Ther 236(1):293–299

    PubMed  CAS  Google Scholar 

  • Guidetti P, Eastman CL, Schwarcz R (1995) Metabolism of [5–3H] kynurenine in the rat brain in vivo: evidence for the existence of a functional kynurenine pathway. J Neurochem 65(6):2621–2632

    Article  PubMed  CAS  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21(19):7463–7473

    PubMed  CAS  Google Scholar 

  • Jentsch JD, Taylor JR, Roth RH (1998) Subchronic phencyclidine administration increases mesolimbic dopaminergic system responsivity and augments stress- and psychostimulant-induced hyperlocomotion. Neuropsychopharmacology 19(2):105–113

    Article  PubMed  CAS  Google Scholar 

  • Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, Carlsson A, Laruelle M (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48(7):627–640

    Article  PubMed  CAS  Google Scholar 

  • Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52(4):1319–1328

    Article  PubMed  CAS  Google Scholar 

  • Kita T, Morrison PF, Heyes MP, Markey SP (2002) Effects of systemic and central nervous system localized inflammation on the contributions of metabolic precursors to the l-kynurenine and quinolinic acid pools in brain. J Neurochem 82(2):258–268

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93(17):9235–9240

    Article  PubMed  CAS  Google Scholar 

  • Linderholm KR, Andersson A, Olsson S, Olsson E, Snodgrass R, Engberg G, Erhardt S (2007) Activation of rat ventral tegmental area dopamine neurons by endogenous kynurenic acid: a pharmacological analysis. Neuropharmacology 53(8):918–924

    Article  PubMed  CAS  Google Scholar 

  • Linderholm, KR, Skogh, E, Olsson, SK, Dahl, ML, Holtze, M, Engberg, G, Samuelsson, M, Erhardt, S (2010) Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull (Epub ahead of print)

  • Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17(3):141–150

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Geyer MA (1989) Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 2(4):299–308

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Geyer MA (1991) Parametric determinants in pre-stimulus modification of acoustic startle: interaction with ketamine. Psychopharmacology (Berl) 105(2):162–168

    Article  CAS  Google Scholar 

  • Marks MJ, Stitzel JA, Collins AC (1985) Time course study of the effects of chronic nicotine infusion on drug response and brain receptors. J Pharmacol Exp Ther 235(3):619–628

    PubMed  CAS  Google Scholar 

  • Nilsson LK, Linderholm KR, Engberg G, Paulson L, Blennow K, Lindstrom LH, Nordin C, Karanti A, Persson P, Erhardt S (2005) Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res 80(2–3):315–322

    Article  PubMed  CAS  Google Scholar 

  • Nilsson LK, Linderholm KR, Erhardt S (2006) Subchronic treatment with kynurenine and probenecid: effects on prepulse inhibition and firing of midbrain dopamine neurons. J Neural Transm 113(5):557–571

    Article  PubMed  CAS  Google Scholar 

  • Okuno E, Schmidt W, Parks DA, Nakamura M, Schwarcz R (1991) Measurement of rat brain kynurenine aminotransferase at physiological kynurenine concentrations. J Neurochem 57(2):533–540

    Article  PubMed  CAS  Google Scholar 

  • Olsson SK, Andersson AS, Linderholm KR, Holtze M, Nilsson-Todd LK, Schwieler L, Olsson E, Larsson K, Engberg G, Erhardt S (2009) Elevated levels of kynurenic acid change the dopaminergic response to amphetamine: implications for schizophrenia. Int J Neuropsychopharmacol 12(4):501–512

    Article  PubMed  CAS  Google Scholar 

  • Parsons CG, Danysz W, Quack G, Hartmann S, Lorenz B, Wollenburg C, Baran L, Przegalinski E, Kostowski W, Krzascik P, Chizh B, Headley PM (1997) Novel systemically active antagonists of the glycine site of the N-methyl-d-aspartate receptor: electrophysiological, biochemical and behavioral characterization. J Pharmacol Exp Ther 283(3):1264–1275

    PubMed  CAS  Google Scholar 

  • Potter MC, Elmer GI, Bergeron R, Albuquerque EX, Guidetti P, Wu HQ, Schwarcz R (2010) Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 35(8):1734–1742

    PubMed  CAS  Google Scholar 

  • Rassoulpour A, Wu HQ, Ferre S, Schwarcz R (2005) Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem 93(3):762–765

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Quearry BJ, Saito M, Nowak TS Jr, Markey SP, Heyes MP (1993) Kynurenine 3-hydroxylase in brain: species activity differences and effect of gerbil cerebral ischemia. Arch Biochem Biophys 307(1):104–109

    Article  PubMed  CAS  Google Scholar 

  • Sapko MT, Guidetti P, Yu P, Tagle DA, Pellicciari R, Schwarcz R (2006) Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: Implications for Huntington’s disease. Exp Neurol 197(1):31–40

    Article  PubMed  CAS  Google Scholar 

  • Sathyasaikumar, KV, Stachowski, EK, Wonodi, I, Roberts, RC, Rassoulpour, A, McMahon, RP, Schwarcz, R (2010) Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr Bull (Epub ahead of print)

  • Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50(7):521–530

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ (2010) Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol 90(2):230–245

    Article  PubMed  CAS  Google Scholar 

  • Schwieler L, Erhardt S, Nilsson L, Linderholm K, Engberg G (2006) Effects of COX-1 and COX-2 inhibitors on the firing of rat midbrain dopaminergic neurons–possible involvement of endogenous kynurenic acid. Synapse 59(5):290–298

    Article  PubMed  CAS  Google Scholar 

  • Schwieler L, Linderholm KR, Nilsson-Todd LK, Erhardt S, Engberg G (2008) Clozapine interacts with the glycine site of the NMDA receptor: electrophysiological studies of dopamine neurons in the rat ventral tegmental area. Life Sci 83(5–6):170–175

    Article  PubMed  CAS  Google Scholar 

  • Shepard PD, Joy B, Clerkin L, Schwarcz R (2003) Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat. Neuropsychopharmacology 28(8):1454–1462

    Article  PubMed  CAS  Google Scholar 

  • Wu, H-Q, Schwarcz, R (2009) AMPA receptors regulate kynurenate-induced dopamine release in the rat striatum. Neuroscience Meeting Planner: (Society for Neuroscience, Chicago); Program no 748.12 (online). Available from URL: http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=5f2dded0-c163-41a7-9f59-46d9575ae801&cKey=26ff0ae7-e80e-43a2-9caa-a4239e1c0b84&mKey={081F7976-E4CD-4F3D-A0AF-E8387992A658}

  • Zhang Y, Colabroy KL, Begley TP, Ealick SE (2005) Structural studies on 3-hydroxyanthranilate-3,4-dioxygenase: the catalytic mechanism of a complex oxidation involved in NAD biosynthesis. Biochemistry 44(21):7632–7643

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by the Karolinska Institutet, Svenska Läkaresällskapet and the Swedish Research Council (Dr. Erhardt, No. 2009-4046; 2009-7052).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Erhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsson, S.K., Larsson, M.K. & Erhardt, S. Subchronic elevation of brain kynurenic acid augments amphetamine-induced locomotor response in mice. J Neural Transm 119, 155–163 (2012). https://doi.org/10.1007/s00702-011-0706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0706-6

Keywords

Navigation