Skip to main content

Advertisement

Log in

The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery

  • Basic Neurosciences, Genetics and Immunology - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The application of deep brain stimulation (DBS) to the pedunculopontine tegmental nucleus (PPTg) has required profound modifications of classic neurosurgical techniques and of the criteria for evaluation of clinical results. This review analyzes a novel method of targeting the PPTg, based on angio-computerized tomography (angio-CT) scans and the tridimensional reconstruction of nuclei and cerebral vessels, and considers the advantages of applying these methods in comparison to the more traditional approach based on reference points obtained through the evaluation of the bicommessural line. Validation of the results obtained following unilateral PPTg DBS through neurophysiological recordings and objective measurements of functional parameters suggests that the PPTg may be considered as an initial target for the treatment of motor symptoms in selected patients affected by idiopathic Parkinson’s disease (PD), which, if required, could be followed by DBS of other target areas. Moreover, on the basis of the observations derived from stimulating the PPTg, the potential utility attributed up to date to intraoperative neurophysiological recordings for identifying neurosurgical targets should be revisited, and the need for changes in the intraoperative management of patients has arisen from the body of evidence accumulated over recent years. The results obtained by different groups following PPTg DBS in parkinsonian patients are not uniform, most likely due to a cautious acceptance of this methodology, the experience progressively acquired, the criteria for patient selection and to subtle differences in target location. Although the role of PPTg in PD and/or in other pathologies remains to be clarified, pursuing the traditional approach on classical basal ganglia targets may limit the perspective of DBS based on multiple implantations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afshar F, Dykes E (1982) A three-dimensional reconstruction of the human brain stem. J Neurosurg 57:491–495

    Article  PubMed  CAS  Google Scholar 

  • Afshar F, Watkins ES, Yap JC (1978) Stereotactic atlas of the human brainstem and cerebellar nuclei. Raven Press, New York

    Google Scholar 

  • Androulidakis AG, Mazzone P, Litvak V, Penny W, Dileone M, Gaynor LM, Tisch S, Di Lazzaro V, Brown P (2008) Oscillatory activity in the pedunculopontine area of patients with Parkinson’s disease. Exp Neurol 211:59–66

    Article  PubMed  Google Scholar 

  • Aravamuthan BR, Muthusamy KA, Stein JF, Aziz TZ, Johansen-Berg H (2007) Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. Neuroimage 37:694–705

    Article  PubMed  CAS  Google Scholar 

  • Aravamuthan BR, Stein JF, Aziz TZ (2008) The anatomy and localization of the pedunculopontine nucleus determined using probabilistic diffusion tractography. Br J Neurosurg 22(Suppl 1):S25–S32

    Article  PubMed  Google Scholar 

  • Arnulf I (2006) Sleep and wakefulness disturbances in Parkinson’s disease. J Neural Transm Suppl (70)357–360

  • Arnulf I, Ferraye M, Fraix V, Benabid AL, Chabardes S, Goetz L, Pollak P, Debu B (2010) Sleep induced by stimulation in the human pedunculopontine nucleus area. Ann Neurol 67:546–549

    Article  PubMed  Google Scholar 

  • Barciela CN, Fernandez Varela JM, Martin BB, Rilo PB, Suarez QJ, Gonzalez BJ, Varela PP (2002) Analysis of the area and length of masticatory cycles in male and female subjects. J Oral Rehabil 29:1160–1164

    Article  Google Scholar 

  • Benabid AL, Wallace B, Mitrofanis J, Xia R, Piallat B, Chabardes S, Berger F (2005) A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system. Acta Neurol Belg 105:149–157

    PubMed  Google Scholar 

  • Benazzouz A, Breit S, Koudsie A, Pollak P, Krack P, Benabid AL (2002) Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17(Suppl 3):S145–S149

    Article  PubMed  Google Scholar 

  • Binder DK, Rau G, Starr PA (2003) Hemorrhagic complications of microelectrode-guided deep brain stimulation. Stereotact Funct Neurosurg 80:28–31

    Article  PubMed  Google Scholar 

  • Binder DK, Rau GM, Starr PA (2005) Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery 56:722–732

    Article  PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  PubMed  Google Scholar 

  • Ceravolo R, Brusa L, Galati S, Volterrani D, Peppe A, Siciliano G, Pierantozzi M, Moschella V, Bonuccelli U, Stanzione P, Stefani A (2010) Low frequency stimulation of the nucleus tegmenti pedunculopontini increases cortical metabolism in Parkinsonian patients. Eur J Neurol (Epub ahead of print)

  • Costa A, Carlesimo GA, Caltagirone C, Mazzone P, Pierantozzi M, Stefani A, Peppe A (2010) Effects of deep brain stimulation of the peduncolopontine area on working memory tasks in patients with Parkinson’s disease. Parkinsonism Relat Disord 16:64–67

    Article  PubMed  Google Scholar 

  • Fedele E, Mazzone P, Stefani A, Bassi A, Ansaldo MA, Raiteri M, Altibrandi MG, Pierantozzi M, Giacomini P, Bernardi G, Stanzione P (2001) Microdialysis in Parkinsonian patient basal ganglia: acute apomorphine-induced clinical and electrophysiological effects not paralleled by changes in the release of neuroactive amino acids. Exp Neurol 167:356–365

    Article  PubMed  CAS  Google Scholar 

  • Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology (Berl) 156:216–224

    Article  CAS  Google Scholar 

  • Ferraye MU, Gerardin P, Debu B, Chabardes S, Fraix V, Seigneuret E, LeBas JF, Benabid AL, Tilikete C, Pollak P (2009) Pedunculopontine nucleus stimulation induces monocular oscillopsia. J Neurol Neurosurg Psychiatry 80:228–231

    Article  PubMed  CAS  Google Scholar 

  • Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas JF, Benabid AL, Chabardes S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rill E (1991) The pedunculopontine nucleus. Prog Neurobiol 36:363–389

    Article  PubMed  CAS  Google Scholar 

  • Hariz MI, Fodstad H (1999) Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg 72:157–169

    Article  PubMed  CAS  Google Scholar 

  • Hariz M, Blomstedt P, Limousin P (2004) The myth of microelectrode recording in ensuring a precise location of the DBS electrode within the sensorimotor part of the subthalamic nucleus. Mov Disord 19:863–864

    Article  PubMed  Google Scholar 

  • Hawkes CH, Del Tredici K, Braak H (2010) A timeline for Parkinson’s disease. Parkinsonism Relat Disord 16:79–84

    Article  PubMed  Google Scholar 

  • Hemm S, Mennessier G, Vayssiere N, Cif L, El Fertit H, Coubes P (2005) Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modelling and magnetic resonance imaging. J Neurosurg 103:949–955

    Article  PubMed  Google Scholar 

  • Honey CR, Berk C, Palur RS, Schulzer M (2001) Microelectrode recording for pallidotomy: mandatory, beneficial or dangerous? Stereotact Funct Neurosurg 77:98–100

    Article  PubMed  CAS  Google Scholar 

  • Inglis WL, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47:1–29

    Article  PubMed  CAS  Google Scholar 

  • Insola A, Padua A, Scarnati E, Valeriani M (2010) Where are the somatosensory evoked potentials recorded from DBS leads implanted in the pedunculopontine tegmental nucleus generated. Mov Disord (in press)

  • Khan S, Javed S, Park N, Gill SS, Patel NK (2010) A magnetic resonance imaging-directed method for transventricular targeting of midline structures for deep brain stimulation using implantable guide tubes. Neurosurgery 66:234–237

    Article  PubMed  Google Scholar 

  • Kretschmer BD, Koch M (1998) The ventral pallidum mediates disruption of prepulse inhibition of the acoustic startle response induced by dopamine agonists, but not by NMDA antagonists. Brain Res 798:204–210

    Article  PubMed  CAS  Google Scholar 

  • Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231

    Article  PubMed  CAS  Google Scholar 

  • Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, Wherrett J, Naglie G, Hamani C, Smith GS, Lozano AM (2010) A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol 68:521–534

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Chang SY, Roberts DW, Kim U (2004) Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus. J Neurosurg 101:511–517

    Article  PubMed  CAS  Google Scholar 

  • Lim AS, Lozano AM, Moro E, Hamani C, Hutchison WD, Dostrovsky JO, Lang AE, Wennberg RA, Murray BJ (2007) Characterization of REM-sleep associated ponto-geniculo-occipital waves in the human pons. Sleep 30:823–827

    PubMed  Google Scholar 

  • Lim AS, Moro E, Lozano AM, Hamani C, Dostrovsky JO, Hutchison WD, Lang AE, Wennberg RA, Murray BJ (2009) Selective enhancement of rapid eye movement sleep by deep brain stimulation of the human pons. Ann Neurol 66:110–114

    Article  PubMed  Google Scholar 

  • Lipsman N, McIntyre RS, Giacobbe P, Torres C, Kennedy SH, Lozano AM (2010) Neurosurgical treatment of bipolar depression: defining treatment resistance and identifying surgical targets. Bipolar Disord 12:691–701

    Article  PubMed  Google Scholar 

  • Lubik S, Fogel W, Tronnier V, Krause M, Konig J, Jost WH (2006) Gait analysis in patients with advanced Parkinson disease: different or additive effects on gait induced by levodopa and chronic STN stimulation. J Neural Transm 113:163–173

    Article  PubMed  CAS  Google Scholar 

  • Mazzone P (2001) Il sistema stereotassico 3P Maranello. Europa Medicophysica 3:318–319

    Google Scholar 

  • Mazzone P (2003) Deep brain stimulation in Parkinson’s disease: bilateral implantation of globus pallidus and subthalamic nucleus. J Neurosurg Sci 47:47–51

    PubMed  CAS  Google Scholar 

  • Mazzone P, Scarnati E (2009) Deep brain stimulation of the medial thalamus for movement disorders: the role of centromedian-parafascicular complex. In: Krames ES, Peckham PH, Rezai AR (eds) Neuromodulation. Academic Press, New York, pp 599–615

    Chapter  Google Scholar 

  • Mazzone P, Brown P, Dilazzaro V, Stanzione P, Oliviero A, Peppe A, Santilli V, Insola A, Altibrandi M (2005a) Bilateral implantation in globus pallidus internus and in subthalamic nucleus in Parkinson’s disease. Neuromodulation 8:1–6

    Article  Google Scholar 

  • Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005b) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 16:1877–1881

    Article  PubMed  Google Scholar 

  • Mazzone P, Stanzione P, Lozano A, Sposato S, Scarnati E, Stefani A (2005c) Brain stimulation and movement disorders: where are we going? In: Meglio M (ed) Proceedings of the 14th meeting of the World Society for Stereotactic and Functional Neurosurgery (WSSFN) Monduzzi, Bologna, Italy

  • Mazzone P, Insola A, Lozano A, Galati S, Scarnati E, Peppe A, Stanzione P, Stefani A (2007a) Peripeduncular and pedunculopontine nuclei: a dispute on a clinically relevant target. Neuroreport 18:1407–1408

    Article  PubMed  Google Scholar 

  • Mazzone P, Stanzione P, Lozano A, Scarnati E, Peppe A, Galati S, Stefani A (2007b) The peripeduncular and pedunculopontine nuclei: a putative dispute not discouraging the effort to define a clinically relevant target. Brain 130:E74

    Article  Google Scholar 

  • Mazzone P, Della Marca G, Sposato S, Di Lazzaro V, Scarnati E (2008a) Tridimensional modelling of midbrain and pontine structures: a proposed approach to the stereotactic targeting of nucleus pedunculopontine tegmenti. Neurotarget 3:8–20

    Google Scholar 

  • Mazzone P, Sposato S, Insola A, Di Lazzaro V, Scarnati E (2008b) Surgery of nucleus tegmenti pedunculopontini. Br J Neurosurg 22(Suppl 1):S33–S40

    Article  PubMed  Google Scholar 

  • Mazzone P, Insola A, Sposato S, Scarnati E (2009) The deep brain stimulation of the pedunculopontine tegmental nucleus. Neuromodulation 12:191–204

    Article  Google Scholar 

  • Mazzone P, Falise G, Paoloni M, Scarnati E (2011) The deep brain stimulation of nucleus tegmenti pedunculopontini: a target for Parkinson’s disease. In: Lavano A, Landi A, Lanotte MM (eds) Handbook of stereotaxic and functional neurosurgery. Minerva Medica, Rome, pp 70–76

    Google Scholar 

  • Moro E, Hamani C, Poon YY, Al Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133:215–224

    Article  PubMed  Google Scholar 

  • Muthusamy KA, Aravamuthan BR, Kringelbach ML, Jenkinson N, Voets NL, Johansen-Berg H, Stein JF, Aziz TZ (2007) Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurosurg 107:814–820

    Article  PubMed  Google Scholar 

  • Nakashima K, Wang Y, Shimoda M, Shimoyama R, Yokoyama Y, Takahashi K (1994) Auditory effects on the motor responses after magnetic cortical stimulation and on the H-reflexes in patients with Parkinson’s disease. J Neurol Sci 122:15–19

    Article  PubMed  CAS  Google Scholar 

  • Niemann K, van den Boom R, Haeselbarth K, Afshar F (1999) A brainstem stereotactic atlas in a three-dimensional magnetic resonance imaging navigation system: first experiences with atlas-to-patient registration. J Neurosurg 90:891–901

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Wood J, van Huijzen C (1988) The human central nervous system. A synopsis and atlas. Springer, Berlin

  • Okun MS, Fernandez HH, Wu SS, Kirsch-Darrow L, Bowers D, Bova F, Suelter M, Jacobson CE, Wang X, Gordon CW Jr, Zeilman P, Romrell J, Martin P, Ward H, Rodriguez RL, Foote KD (2009) Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol 65:586–595

    Article  PubMed  Google Scholar 

  • Olszewski J, Baxter D (1982) Cytoarchitecture of the human brain stem. Karger, Basel (Switzerland)

    Google Scholar 

  • Ostrem JL, Christine CW, Glass GA, Schrock LE, Starr PA (2010) Pedunculopontine nucleus deep brain stimulation in a patient with primary progressive freezing gait disorder. Stereotact Funct Neurosurg 88:51–55

    Article  PubMed  Google Scholar 

  • Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783

    Article  PubMed  Google Scholar 

  • Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego

    Google Scholar 

  • Peppe A, Pierantozzi M, Bassi A, Altibrandi MG, Brusa L, Stefani A, Stanzione P, Mazzone P (2004) Stimulation of the subthalamic nucleus compared with the globus pallidus internus in patients with Parkinson disease. J Neurosurg 101:195–200

    Article  PubMed  Google Scholar 

  • Peppe A, Pierantozzi M, Chiavalon C, Marchetti F, Caltagirone C, Musicco M, Stanzione P, Stefani A (2010) Deep brain stimulation of the pedunculopontine tegmentum and subthalamic nucleus: effects on gait in Parkinson’s disease. Gait Posture 32:512–518

    Article  PubMed  CAS  Google Scholar 

  • Piallat B, Chabardes S, Torres N, Fraix V, Goetz L, Seigneuret E, Bardinet E, Ferraye M, Debu B, Krack P, Yelnik J, Pollak P, Benabid AL (2009) Gait is associated with an increase in tonic firing of the sub-cuneiform nucleus neurons. Neuroscience 158:1201–1205

    Article  PubMed  CAS  Google Scholar 

  • Pierantozzi M, Palmieri MG, Galati S, Stanzione P, Peppe A, Tropepi D, Brusa L, Pisani A, Moschella V, Marciani MG, Mazzone P, Stefani A (2008) Pedunculopontine nucleus deep brain stimulation changes spinal cord excitability in Parkinson’s disease patients. J Neural Transm 115:731–735

    Article  PubMed  Google Scholar 

  • Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 16:1883–1887

    Article  PubMed  Google Scholar 

  • Reese NB, Garcia-Rill E, Skinner RD (1995) The pedunculopontine nucleus—auditory input, arousal and pathophysiology. Prog Neurobiol 47:105–133

    Article  PubMed  CAS  Google Scholar 

  • Robertson LT, Hammerstad JP (1996) Jaw movement dysfunction related to Parkinson’s disease and partially modified by levodopa. J Neurol Neurosurg Psychiatry 60:41–50

    Article  PubMed  CAS  Google Scholar 

  • Robertson LT, Horak FB, Anderson VC, Burchiel KJ, Hammerstad JP (2001) Assessments of axial motor control during deep brain stimulation in parkinsonian patients. Neurosurgery 48:544–551

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Oroz MC, Obeso JA, Lang AE, Houeto JL, Pollak P, Rehncrona S, Kulisevsky J, Albanese A, Volkmann J, Hariz MI, Quinn NP, Speelman JD, Guridi J, Zamarbide I, Gironell A, Molet J, Pascual-Sedano B, Pidoux B, Bonnet AM, Agid Y, Xie J, Benabid AL, Lozano AM, Saint-Cyr J, Romito L, Contarino MF, Scerrati M, Fraix V, Van Blercom N (2005) Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128:2240–2249

    Article  PubMed  CAS  Google Scholar 

  • Sacchettoni SA, Rada P, Teneud L, Galué R, Poincaré Abud J, Félix Del Corral J (2010) Microdiálisis cerebral, una herramienta promisoria para el estudio neuroquímico en neurocirugía: Una descripción técnica. Neurotarget 5:30–43

    Google Scholar 

  • Scarnati E, Florio T (1997) The pedunculopontine nucleus and related structures. Functional organization. Adv Neurol 74:97–110

    PubMed  CAS  Google Scholar 

  • Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain. Thieme, New York

    Google Scholar 

  • Schweder PM, Hansen PC, Green AL, Quaghebeur G, Stein J, Aziz TZ (2010a) Connectivity of the pedunculopontine nucleus in parkinsonian freezing of gait. Neuroreport 21:914–916

    Article  PubMed  Google Scholar 

  • Schweder PM, Joint C, Hansen PC, Green AL, Quaghebeur G, Aziz TZ (2010b) Chronic pedunculopontine nucleus stimulation restores functional connectivity. Neuroreport 21:1065–1068

    Article  PubMed  Google Scholar 

  • Shimamoto SA, Larson PS, Ostrem JL, Glass GA, Turner RS, Starr PA (2010) Physiological identification of the human pedunculopontine nucleus. J Neurol Neurosurg Psychiatry 81:80–86

    Article  PubMed  CAS  Google Scholar 

  • Stefani A, Fedele E, Galati S, Pepicelli O, Frasca S, Pierantozzi M, Peppe A, Brusa L, Orlacchio A, Hainsworth AH, Gattoni G, Stanzione P, Bernardi G, Raiteri M, Mazzone P (2005) Subthalamic stimulation activates internal pallidus: evidence from cGMP microdialysis in PD patients. Ann Neurol 57:448–452

    Article  PubMed  Google Scholar 

  • Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607

    Article  PubMed  Google Scholar 

  • Stefani A, Pierantozzi M, Ceravolo R, Brusa L, Galati S, Stanzione P (2010) Deep brain stimulation of pedunculopontine tegmental nucleus (PPTg) promotes cognitive and metabolic changes: a target-specific effect or response to a low-frequency pattern of stimulation? Clin EEG Neurosci 41:82–86

    PubMed  CAS  Google Scholar 

  • Sterio D, Zonenshayn M, Mogilner AY, Rezai AR, Kiprovski K, Kelly PJ, Beric A (2002) Neurophysiological refinement of subthalamic nucleus targeting. Neurosurgery 50:58–67

    PubMed  Google Scholar 

  • Stolze H, Klebe S, Poepping M, Lorenz D, Herzog J, Hamel W, Schrader B, Raethjen J, Wenzelburger R, Mehdorn HM, Deuschl G, Krack P (2001) Effects of bilateral subthalamic nucleus stimulation on parkinsonian gait. Neurology 57:144–146

    PubMed  CAS  Google Scholar 

  • Stone S, Hamani C, Lozano AM (2009) Pedunculopontine nucleus stimulation for Parkinson’s disease. In: Lozano AM, Gildemberg PL, Tasker RR (eds) Textbook of stereotaxic functional neurosurgery. Springer, Berlin, pp 1649–1663

    Chapter  Google Scholar 

  • Strafella AP, Lozano AM, Ballanger B, Poon YY, Lang AE, Moro E (2008) rCBF changes associated with PPN stimulation in a patient with Parkinson’s disease: a PET study. Mov Disord 23:1051–1054

    Article  PubMed  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 156:194–215

    Article  CAS  Google Scholar 

  • Tabbal SD, Ushe M, Mink JW, Revilla FJ, Wernle AR, Hong M, Karimi M, Perlmutter JS (2008) Unilateral subthalamic nucleus stimulation has a measurable ipsilateral effect on rigidity and bradykinesia in Parkinson disease. Exp Neurol 211:234–242

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, David M, Tornoux P, Corredor H, Kvasina T (1957) Atlas d’anatomie stereotaxique des noyaux gris centraux. Masson, Paris

    Google Scholar 

  • Thevathasan W, Silburn PA, Brooker H, Coyne TJ, Khan S, Gill SS, Aziz TZ, Brown P (2010) The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in parkinsonism. J Neurol Neurosurg Psychiatry 81:1099–1104

    Article  PubMed  Google Scholar 

  • Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, Lang AE, Dostrovsky JO (2006) Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol 96:3248–3256

    Article  PubMed  Google Scholar 

  • Weinberger M, Hamani C, Hutchison WD, Moro E, Lozano AM, Dostrovsky JO (2008) Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp Brain Res 188:165–174

    Article  PubMed  Google Scholar 

  • Wilcox RA, Cole MH, Wong D, Coyne T, Silburn P, Kerr G (2010) Pedunculopontine nucleus deep brain stimulation produces sustained improvement in primary progressive freezing of gait. J Neurol Neurosurg Psychiatry

  • Yeh IJ, Tsang EW, Hamani C, Moro E, Mazzella F, Poon YY, Lozano AM, Chen R (2010) Somatosensory evoked potentials recorded from the human pedunculopontine nucleus region. Mov Disord 25:2076–2083

    Article  PubMed  Google Scholar 

  • Yelnik J (2007) PPN or PPD, what is the target for deep brain stimulation in Parkinson’s disease? Brain 130:e79

    Article  PubMed  Google Scholar 

  • Yelnik J, Bardinet E, Dormont D, Malandain G, Ourselin S, Tande D, Karachi C, Ayache N, Cornu P, Agid Y (2007) A three-dimensional, histological and deformable atlas of the human basal ganglia. I. Atlas construction based on immunohistochemical and MRI data. Neuroimage 34:618–638

    Article  PubMed  Google Scholar 

  • Young RF, Tronnier V, Rinaldi PC (1992) Chronic stimulation of the Kolliker-Fuse nucleus region for relief of intractable pain in humans. J Neurosurg 76:979–985

    Article  PubMed  CAS  Google Scholar 

  • Zanini S, Moschella V, Stefani A, Peppe A, Pierantozzi M, Galati S, Costa A, Mazzone P, Stanzione P (2009) Grammar improvement following deep brain stimulation of the subthalamic and the pedunculopontine nuclei in advanced Parkinson’s disease: a pilot study. Parkinsonism Relat Disord 15:606–609

    Article  PubMed  Google Scholar 

  • Zrinzo L, Zrinzo LV, Hariz M (2007a) The pedunculopontine and peripeduncular nuclei: a tale of two structures. Brain 130:e73

    Article  PubMed  Google Scholar 

  • Zrinzo L, Zrinzo LV, Hariz M (2007b) The peripeduncular nucleus: a novel target for deep brain stimulation? Neuroreport 18:1301–1302

    Article  PubMed  Google Scholar 

  • Zrinzo L, Zrinzo LV, Tisch S, Limousin PD, Yousry TA, Afshar F, Hariz MI (2008) Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131:1588–1598

    Article  PubMed  Google Scholar 

  • Zrinzo L, van Hulzen AL, Gorgulho AA, Limousin P, Staal MJ, De Salles AA, Hariz MI (2009) Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation. J Neurosurg 110:1283–1290

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Marco Paoloni, University of Rome La Sapienza, for carrying out gait analysis; Dr. Gianni Falise, University of Rome La Sapienza, for evaluating oromandibular movements and Dr. Guido Vagliasindi, University of Catania, for evaluating the lead electrical field. E.S. was supported by grants from MIUR (Cofin 2008) and University of L’Aquila. Paolo Mazzone wishes to dedicate this paper to the voice of the Japanese soprano Akiko Taniguchi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Mazzone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzone, P., Sposato, S., Insola, A. et al. The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery. J Neural Transm 118, 1431–1451 (2011). https://doi.org/10.1007/s00702-011-0593-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0593-x

Keywords

Navigation