Skip to main content

Advertisement

Log in

Inflammation processes in perinatal brain damage

  • Movement Disorders-Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Once viewed as an isolated, immune-privileged organ, the central nervous system has undergone a conceptual change. Neuroinflammation has moved into the focus of research work regarding pathomechanisms underlying perinatal brain damage. In this review, we provide an overview of current concepts regarding perinatal brain damage and the role of inflammation in the disease pathomechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adén U, Favrais G, Plaisant F, Winerdal M, Felderhoff-Mueser UJL, Lelievre V, Gressens P (2010) Systemic inflammation sensitizes the neonatal brain to excitotoxicity through a pro-/anti-inflammatory imbalance: key role of TNF-α pathway and protection by etanercept. Brain Behav Immun (in press)

  • Anthony DC, Bolton SJ, Fearn S, Perry VH (1997) Age-related effects of interleukin-1 beta on polymorphonuclear neutrophil-dependent increases in blood-brain barrier permeability in rats. Brain 120(Pt 3):435–444

    Article  PubMed  Google Scholar 

  • Anthony D, Dempster R, Fearn S, Clements J, Wells G, Perry VH, Walker K (1998) CXC chemokines generate age-related increases in neutrophil-mediated brain inflammation and blood-brain barrier breakdown. Curr Biol 8:923–926

    Article  PubMed  CAS  Google Scholar 

  • Arvin KL, Han BH, Du Y, Lin SZ, Paul SM, Holtzman DM (2002) Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 52:54–61

    Article  PubMed  CAS  Google Scholar 

  • Bartha AI, Foster-Barber A, Miller SP, Vigneron DB, Glidden DV, Barkovich AJ, Ferriero DM (2004) Neonatal encephalopathy: association of cytokines with MR spectroscopy and outcome. Pediatr Res 56:960–966

    Article  PubMed  CAS  Google Scholar 

  • Baud O, Daire JL, Dalmaz Y, Fontaine RH, Krueger RC, Sebag G, Evrard P, Gressens P, Verney C (2004) Gestational hypoxia induces white matter damage in neonatal rats: a new model of periventricular leukomalacia. Brain Pathol 14:1–10

    Article  PubMed  Google Scholar 

  • Biran V, Cochois V, Karroubi A, Arrang JM, Charriaut-Marlangue C, Heron A (2008) Stroke induces histamine accumulation and mast cell degranulation in the neonatal rat brain. Brain Pathol 18:1–9

    Article  PubMed  CAS  Google Scholar 

  • Dammann O, Leviton A (1997) Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res 42:1–8

    Article  PubMed  CAS  Google Scholar 

  • Dammann O, Leviton A (2007) Perinatal brain damage causation. Dev Neurosci 29:280–288

    Article  PubMed  CAS  Google Scholar 

  • Dammann O, Kuban KC, Leviton A (2002) Perinatal infection, fetal inflammatory response, white matter damage, and cognitive limitations in children born preterm. Ment Retard Dev Disabil Res Rev 8:46–50

    Article  PubMed  Google Scholar 

  • Debillon T, Gras-Leguen C, Verielle V, Winer N, Caillon J, Roze JC, Gressens P (2000) Intrauterine infection induces programmed cell death in rabbit periventricular white matter. Pediatr Res 47:736–742

    Article  PubMed  CAS  Google Scholar 

  • Degos V, Loron G, Mantz J, Gressens P (2008) Neuroprotective strategies for the neonatal brain. Anesth Analg 106:1670–1680

    Article  PubMed  Google Scholar 

  • Denker SP, Ji S, Dingman A, Lee SY, Derugin N, Wendland MF, Vexler ZS (2007) Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke. J Neurochem 100:893–904

    Article  PubMed  CAS  Google Scholar 

  • Derrick M, Luo NL, Bregman JC, Jilling T, Ji X, Fisher K, Gladson CL, Beardsley DJ, Murdoch G, Back SA, Tan S (2004) Preterm fetal hypoxia–ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model for human cerebral palsy? J Neurosci 24:24–34

    Article  PubMed  CAS  Google Scholar 

  • Dingman A, Lee SY, Derugin N, Wendland MF, Vexler ZS (2006) Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient cerebral ischemia. J Neurochem 96:1467–1479

    Article  PubMed  CAS  Google Scholar 

  • Dommergues MA, Patkai J, Renauld JC, Evrard P, Gressens P (2000) Proinflammatory cytokines and interleukin-9 exacerbate excitotoxic lesions of the newborn murine neopallium. Ann Neurol 47:54–63

    Article  PubMed  CAS  Google Scholar 

  • Dommergues MA, Plaisant F, Verney C, Gressens P (2003) Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 121:619–628

    Article  PubMed  CAS  Google Scholar 

  • Doverhag C, Keller M, Karlsson A, Hedtjarn M, Nilsson U, Kapeller E, Sarkozy G, Klimaschewski L, Humpel C, Hagberg H, Simbruner G, Gressens P, Savman K (2008) Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice. Neurobiol Dis 31:133–144

    Article  PubMed  CAS  Google Scholar 

  • Ek CJ, Habgood MD, Dziegielewska KM, Potter A, Saunders NR (2001) Permeability and route of entry for lipid-insoluble molecules across brain barriers in developing Monodelphis domestica. J Physiol 536(Pt 3):841–853

    Article  PubMed  CAS  Google Scholar 

  • Ek CJ, Dziegielewska KM, Stolp H, Saunders NR (2006) Functional effectiveness of the blood-brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica). J Comp Neurol 496(1):13–26

    Article  PubMed  CAS  Google Scholar 

  • Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-Baltzer I, Hagberg H (2001) Bacterial endotoxin sensitizes the immature brain to hypoxic-ischaemic injury. Eur J Neurosci 13:1101–1106

    Article  PubMed  CAS  Google Scholar 

  • Eklind S, Mallard C, Arvidsson P, Hagberg H (2005) Lipopolysaccharide induces both a primary and a secondary phase of sensitization in the developing rat brain. Pediatr Res 58:112–116

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt B (2003) Development of the blood-brain barrier. Cell Tissue Res 314:119–129

    Article  PubMed  CAS  Google Scholar 

  • Faustino J, Liu B, Lee S, Derugin N, Wendland MF, Vexler ZS (2009) Blockade of endogenous cytokine-induced neutrophil chemoattractant protein 1 exacerbates injury after neonatal stroke Stroke meeting. San Diego

  • Favrais G, Schwendimann L, Gressens P, Lelievre V (2007) Cyclooxygenase-2 mediates the sensitizing effects of systemic IL-1-beta on excitotoxic brain lesions in newborn mice. Neurobiol Dis 25:496–505

    Article  PubMed  CAS  Google Scholar 

  • Feldhaus B, Dietzel ID, Heumann R, Berger R (2004) Effects of interferon-gamma and tumor necrosis factor-alpha on survival and differentiation of oligodendrocyte progenitors. J Soc Gynecol Investig 11:89–96

    Article  PubMed  CAS  Google Scholar 

  • Follett PL, Rosenberg PA, Volpe JJ, Jensen FE (2000) NBQX attenuates excitotoxic injury in developing white matter. J Neurosci 20:9235–9241

    PubMed  CAS  Google Scholar 

  • Follett PL, Deng W, Dai W, Talos DM, Massillon LJ, Rosenberg PA, Volpe JJ, Jensen FE (2004) Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 24:4412–4420

    Article  PubMed  CAS  Google Scholar 

  • Fontaine RH, Cases O, Lelievre V, Mesples B, Renauld JC, Loron G, Degos V, Dournaud P, Baud O, Gressens P (2008) IL-9/IL-9 receptor signaling selectively protects cortical neurons against developmental apoptosis. Cell Death Differ 15:1542–1552

    Article  PubMed  CAS  Google Scholar 

  • Foster-Barber A, Ferriero DM (2002) Neonatal encephalopathy in the term infant: neuroimaging and inflammatory cytokines. Ment Retard Dev Disabil Res Rev 8:20–24

    Article  PubMed  Google Scholar 

  • Fox C, Dingman A, Derugin N, Wendland MF, Manabat C, Ji S, Ferriero DM, Vexler ZS (2005) Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 25:1138–1149

    Article  PubMed  CAS  Google Scholar 

  • Galasso JM, Miller MJ, Cowell RM, Harrison JK, Warren JS, Silverstein FS (2000) Acute excitotoxic injury induces expression of monocyte chemoattractant protein-1 and its receptor, CCR2, in neonatal rat brain. Exp Neurol 165:295–305

    Article  PubMed  CAS  Google Scholar 

  • Ghersi-Egea JF, Strazielle N, Murat A, Jouvet A, Buénerd A, Belin MF (2006) Brain protection at the blood-cerebrospinal fluid interface involves a glutathione-dependent metabolic barrier mechanism. J Cereb Blood Flow Metab 26(9):1165–1175

    PubMed  CAS  Google Scholar 

  • Girard S, Kadhim H, Larouche A, Roy M, Gobeil F, Sebire G (2008) Pro-inflammatory disequilibrium of the IL-1 beta/IL-1ra ratio in an experimental model of perinatal brain damages induced by lipopolysaccharide and hypoxia–ischemia. Cytokine 43:54–62

    Article  PubMed  CAS  Google Scholar 

  • Gressens P, Marret S, Hill JM, Brenneman DE, Gozes I, Fridkin M, Evrard P (1997) Vasoactive intestinal peptide prevents excitotoxic cell death in the murine developing brain. J Clin Invest 100:390–397

    Article  PubMed  CAS  Google Scholar 

  • Gressens P, Rogido M, Paindaveine B, Sola A (2002) The impact of neonatal intensive care practices on the developing brain. J Pediatr 140:646–653

    Article  PubMed  Google Scholar 

  • Grether JK, Nelson KB (1997) Maternal infection and cerebral palsy in infants of normal birth weight. JAMA 278:207–211

    Article  PubMed  CAS  Google Scholar 

  • Hagberg H, Mallard C (2005) Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol 18:117–123

    Article  PubMed  CAS  Google Scholar 

  • Hagberg H, Gilland E, Bona E, Hanson LA, Hahin-Zoric M, Blennow M, Holst M, McRae A, Soder O (1996) Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia–ischemia in neonatal rats. Pediatr Res 40:603–609

    Article  PubMed  CAS  Google Scholar 

  • Hagberg H, Peebles D, Mallard C (2002) Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev 8:30–38

    Article  PubMed  Google Scholar 

  • Harding DR, Dhamrait S, Whitelaw A, Humphries SE, Marlow N, Montgomery HE (2004) Does interleukin-6 genotype influence cerebral injury or developmental progress after preterm birth? Pediatrics 114:941–947

    Article  PubMed  Google Scholar 

  • Haynes RL, Folkerth RD, Keefe RJ, Sung I, Swzeda LI, Rosenberg PA, Volpe JJ, Kinney HC (2003) Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 62:441–450

    PubMed  Google Scholar 

  • Hedtjarn M, Leverin AL, Eriksson K, Blomgren K, Mallard C, Hagberg H (2002) Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci 22:5910–5919

    PubMed  CAS  Google Scholar 

  • Hedtjarn M, Mallard C, Iwakura Y, Hagberg H (2005) Combined deficiency of IL-1beta18, but not IL-1alphabeta, reduces susceptibility to hypoxia–ischemia in the immature brain. Dev Neurosci 27:143–148

    Article  PubMed  CAS  Google Scholar 

  • Himmelmann K, Hagberg G, Beckung E, Hagberg B, Uvebrant P (2005) The changing panorama of cerebral palsy in Sweden. IX. Prevalence and origin in the birth-year period 1995–1998. Acta Paediatr 94:287–294

    PubMed  CAS  Google Scholar 

  • Inder T, Mocatta T, Darlow B, Spencer C, Volpe JJ, Winterbourn C (2002) Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury. Pediatr Res 52:213–218

    PubMed  CAS  Google Scholar 

  • Ivacko JA, Sun R, Silverstein FS (1996) Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr Res 39:39–47

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Silverman AJ, Vannucci SJ (2007) Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat. Dev Neurosci 29:373–384

    Article  PubMed  CAS  Google Scholar 

  • Johnson DL, Getson P, Shaer C, O’Donnell R (1987) Intraventricular hemorrhage in the newborn beagle puppy. A limited model of intraventricular hemorrhage in the premature infant. Pediatr Neurosci 13:78–83

    Article  PubMed  CAS  Google Scholar 

  • Kirton A, deVeber G (2009) Advances in perinatal ischemic stroke. Pediatr Neurol 40:205–214

    Article  PubMed  Google Scholar 

  • Kniesel U, Risau W, Wolburg H (1996) Development of blood-brain barrier tight junctions in the rat cortex. Brain Res Dev Brain Res 96:229–240

    Article  PubMed  CAS  Google Scholar 

  • Laudenbach V, Calo G, Guerrini R, Lamboley G, Benoist JF, Evrard P, Gressens P (2001) Nociceptin/orphanin FQ exacerbates excitotoxic white-matter lesions in the murine neonatal brain. J Clin Invest 107:457–466

    Article  PubMed  CAS  Google Scholar 

  • Leonardo CC, Eakin AK, Ajmo JM, Collier LA, Pennypacker KR, Strongin AY, Gottschall PE (2008) Delayed administration of a matrix metalloproteinase inhibitor limits progressive brain injury after hypoxia–ischemia in the neonatal rat. J Neuroinflammation 5:34

    Article  PubMed  CAS  Google Scholar 

  • Lim HB, Smith M (2007) Systemic complications after head injury: a clinical review. Anaesthesia 62:474–482

    Article  PubMed  CAS  Google Scholar 

  • Loeliger M, Watson CS, Reynolds JD, Penning DH, Harding R, Bocking AD, Rees SM (2003) Extracellular glutamate levels and neuropathology in cerebral white matter following repeated umbilical cord occlusion in the near term fetal sheep. Neuroscience 116:705–714

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Goh SJ, Tng PY, Deng YY, Ling EA, Moochhala S (2009) Systemic inflammatory response following acute traumatic brain injury. Front Biosci 14:3795–3813

    Article  PubMed  CAS  Google Scholar 

  • Malaeb S, Dammann O (2009) Fetal inflammatory response and brain injury in the preterm newborn. J Child Neurol 24:1119–1126

    Article  PubMed  Google Scholar 

  • Mallard C, Welin AK, Peebles D, Hagberg H, Kjellmer I (2003) White matter injury following systemic endotoxemia or asphyxia in the fetal sheep. Neurochem Res 28:215–223

    Article  PubMed  CAS  Google Scholar 

  • McColl BW, Allan SM, Rothwell NJ (2009) Systemic infection, inflammation and acute ischemic stroke. Neuroscience 158:1049–1061

    Article  PubMed  CAS  Google Scholar 

  • McRae A, Gilland E, Bona E, Hagberg H (1995) Microglia activation after neonatal hypoxic-ischemia. Brain Res Dev Brain Res 84:245–252

    Article  PubMed  CAS  Google Scholar 

  • Mesples B, Plaisant F, Gressens P (2003) Effects of interleukin-10 on neonatal excitotoxic brain lesions in mice. Brain Res Dev Brain Res 141:25–32

    Article  PubMed  CAS  Google Scholar 

  • Mesples B, Plaisant F, Fontaine RH, Gressens P (2005) Pathophysiology of neonatal brain lesions: lessons from animal models of excitotoxicity. Acta Paediatr 94:185–190

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ, Tran PB (2005) Chemokinetics. Neuron 47:621–623

    Article  PubMed  CAS  Google Scholar 

  • Monier A, Evrard P, Gressens P, Verney C (2006) Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol 499:565–582

    Article  PubMed  CAS  Google Scholar 

  • Monier A, Adle-Biassette H, Delezoide AL, Evrard P, Gressens P, Verney C (2007) Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol 66:372–382

    Article  PubMed  Google Scholar 

  • Nelson KB, Chang T (2008) Is cerebral palsy preventable? Curr Opin Neurol 21:129–135

    Article  PubMed  Google Scholar 

  • Nelson KB, Grether JK (1999) Causes of cerebral palsy. Curr Opin Pediatr 11:487–491

    Article  PubMed  CAS  Google Scholar 

  • Nelson KB, Willoughby RE (2000) Infection, inflammation and the risk of cerebral palsy. Curr Opin Neurol 13:133–139

    Article  PubMed  CAS  Google Scholar 

  • Nijboer CH, Kavelaars A, Vroon A, Groenendaal F, van Bel F, Heijnen CJ (2008) Low endogenous G-protein-coupled receptor kinase 2 sensitizes the immature brain to hypoxia–ischemia-induced gray and white matter damage. J Neurosci 28:3324–3332

    Article  PubMed  CAS  Google Scholar 

  • Normann E, Lacaze-Masmonteil T, Eaton F, Schwendimann L, Gressens P, Thebaud B (2009) A novel mouse model of ureaplasma-induced perinatal inflammation: effects on lung and brain injury. Pediatr Res 65:430–436

    Article  PubMed  Google Scholar 

  • Olivier P, Baud O, Evrard P, Gressens P, Verney C (2005) Prenatal ischemia and white matter damage in rats. J Neuropathol Exp Neurol 64:998–1006

    Article  PubMed  Google Scholar 

  • Pang Y, Campbell L, Zheng B, Fan L, Cai Z, Rhodes P (2010) Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience 166(2):464–475

    Article  PubMed  CAS  Google Scholar 

  • Patkai J, Mesples B, Dommergues MA, Fromont G, Thornton EM, Renauld JC, Evrard P, Gressens P (2001) Deleterious effects of IL-9-activated mast cells and neuroprotection by antihistamine drugs in the developing mouse brain. Pediatr Res 50:222–230

    Article  PubMed  CAS  Google Scholar 

  • Plaisant F, Dommergues MA, Spedding M, Cecchelli R, Brillault J, Kato G, Munoz C, Gressens P (2003) Neuroprotective properties of tianeptine: interactions with cytokines. Neuropharmacology 44:801–809

    Article  PubMed  CAS  Google Scholar 

  • Rezaie P, Male D (1999) Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc Res Tech 45:359–382

    Article  PubMed  CAS  Google Scholar 

  • Rezaie P, Patel K, Male DK (1999) Microglia in the human fetal spinal cord—patterns of distribution, morphology and phenotype. Brain Res Dev Brain Res 115:71–81

    Article  PubMed  CAS  Google Scholar 

  • Robertson CM, Watt MJ, Yasui Y (2007) Changes in the prevalence of cerebral palsy for children born very prematurely within a population-based program over 30 years. JAMA 297:2733–2740

    Article  PubMed  CAS  Google Scholar 

  • Rousset CI, Chalon S, Cantagrel S, Bodard S, Andres C, Gressens P, Saliba E (2006) Maternal exposure to LPS induces hypomyelination in the internal capsule and programmed cell death in the deep gray matter in newborn rats. Pediatr Res 59:428–433

    Article  PubMed  CAS  Google Scholar 

  • Strazielle N, Ghersi-Egea JF (2000) Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 59(7):561–574

    PubMed  CAS  Google Scholar 

  • Streit WJ, Kreutzberg GW (1988) Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J Comp Neurol 268:248–263

    Article  PubMed  CAS  Google Scholar 

  • Svedin P, Hagberg H, Savman K, Zhu C, Mallard C (2007) Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia–ischemia. J Neurosci 27:1511–1518

    Article  PubMed  CAS  Google Scholar 

  • Tahraoui SL, Marret S, Bodenant C, Leroux P, Dommergues MA, Evrard P, Gressens P (2001) Central role of microglia in neonatal excitotoxic lesions of the murine periventricular white matter. Brain Pathol 11:56–71

    Article  PubMed  CAS  Google Scholar 

  • Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J (2001) Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 21:2580–2588

    PubMed  CAS  Google Scholar 

  • van den Tweel ER, Nijboer C, Kavelaars A, Heijnen CJ, Groenendaal F, van Bel F (2005) Expression of nitric oxide synthase isoforms and nitrotyrosine formation after hypoxia–ischemia in the neonatal rat brain. J Neuroimmunol 167:64–71

    Article  PubMed  CAS  Google Scholar 

  • Vela JM, Molina-Holgado E, Arevalo-Martin A, Almazan G, Guaza C (2002) Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Mol Cell Neurosci 20:489–502

    Article  PubMed  CAS  Google Scholar 

  • Vincer MJ, Allen AC, Joseph KS, Stinson DA, Scott H, Wood E (2006) Increasing prevalence of cerebral palsy among very preterm infants: a population-based study. Pediatrics 118:e1621–e1626

    Article  PubMed  Google Scholar 

  • Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50:553–562

    Article  PubMed  CAS  Google Scholar 

  • Volpe JJ (2009) The encephalopathy of prematurity-brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol 16:167–178

    Article  PubMed  Google Scholar 

  • Wilson-Costello D, Friedman H, Minich N, Fanaroff AA, Hack M (2005) Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics 115:997–1003

    Article  PubMed  Google Scholar 

  • Wilson-Costello D, Friedman H, Minich N, Siner B, Taylor G, Schluchter M, Hack M (2007) Improved neurodevelopmental outcomes for extremely low birth weight infants in 2000–2002. Pediatrics 119:37–45

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our research work is supported by Inserm, Université Paris 7, PremUP, the Sixth Framework Program of the European Commission, the Fondation des Gueules Cassées, the Fondation Motrice, the ELA Foundation, the Fondation Grace de Monaco, the Institut pour la Recherche sur la Moelle épinière et l’Encéphale (IRME), the Medical Research Council, the Charité, the German Research Foundation (DFG), the German Federal Ministry of Education and Research, the Sonnenfeld Stiftung and the Sanitätsrat Dr.-Emil-Alexander-Huebner-und-Gemahlin-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Gressens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degos, V., Favrais, G., Kaindl, A.M. et al. Inflammation processes in perinatal brain damage. J Neural Transm 117, 1009–1017 (2010). https://doi.org/10.1007/s00702-010-0411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0411-x

Keywords

Navigation