Skip to main content
Log in

Cortical control of gait in healthy humans: an fMRI study

  • Parkinson's Disease and Allied Conditions - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

This study examined the cortical control of gait in healthy humans using functional magnetic resonance imaging (fMRI). Two block-designed fMRI sessions were conducted during motor imagery of a locomotor-related task. Subjects watched a video clip that showed an actor standing and walking in an egocentric perspective. In a control session, additional fMRI images were collected when participants observed a video clip of the clutch movement of a right hand. In keeping with previous studies using SPECT and NIRS, we detected activation in many motor-related areas including supplementary motor area, bilateral precentral gyrus, left dorsal premotor cortex, and cingulate motor area. Smaller additional activations were observed in the bilateral precuneus, left thalamus, and part of right putamen. Based on these findings, we propose a novel paradigm to study the cortical control of gait in healthy humans using fMRI. Specifically, the task used in this study—involving both mirror neurons and mental imagery—provides a new feasible model to be used in functional neuroimaging studies in this area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong DM (1988) The supraspinal control of mammalian locomotion. J Physiol 405:1–37

    PubMed  CAS  Google Scholar 

  • Ashe J, Lungu OV, Basford AT, Lu X (2006) Cortical control of motor sequences. Curr Opin Neurobiol 16(2):213–221

    Article  PubMed  CAS  Google Scholar 

  • Bakker M, Verstappen CC, Bloem BR, Toni I (2007) Recent advances in functional neuroimaging of gait. J Neural Transm 114(10):1323–1331

    Article  PubMed  CAS  Google Scholar 

  • Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J NeuroSci 13(2):400–404

    Article  PubMed  CAS  Google Scholar 

  • Chouinard PA, Paus T (2006) The primary motor and premotor areas of the human cerebral cortex. Neuroscientist 12(2):143–152

    Article  PubMed  Google Scholar 

  • Craighero L, Metta G, Sandini G, Fadiga L (2007) The mirror-neurons system: data and models. Prog Brain Res 164:39–59

    Article  PubMed  Google Scholar 

  • Cunnington R, Windischberger C, Deecke L, Moser E (2003) The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response. Neuroimage 20(1):404–412

    Article  PubMed  Google Scholar 

  • Cunnington R, Windischberger C, Robinson S, Moser E (2006) The selection of intended actions and the observation of others’ actions: a time-resolved fMRI study. Neuroimage 29(4):1294–1302

    Article  PubMed  Google Scholar 

  • Decety J, Grezes J, Costes N, Perani D, Jeannerod M, Procyk E, Grassi F, Fazio F (1997) Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain 120(Pt 10):1763–1777

    Article  PubMed  Google Scholar 

  • Deiber MP, Ibanez V, Honda M, Sadato N, Raman R, Hallett M (1998) Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography. Neuroimage 7(2):73–85

    Article  PubMed  CAS  Google Scholar 

  • di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91(1):176–180

    Article  PubMed  CAS  Google Scholar 

  • Dietz V (2003) Spinal cord pattern generators for locomotion. Clin Neurophysiol 114(8):1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Dobkin BH, Firestine A, West M, Saremi K, Woods R (2004) Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. Neuroimage 23(1):370–381

    Article  PubMed  Google Scholar 

  • Drew T, Jiang W, Kably B, Lavoie S (1996) Role of the motor cortex in the control of visually triggered gait modifications. Can J Physiol Pharmacol 74(4):426–442

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, Kimura J, Shibasaki H (1997) Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 228(3):183–186

    Article  PubMed  CAS  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(Pt 2):593–609

    Article  PubMed  Google Scholar 

  • Gerardin E, Sirigu A, Lehericy S, Poline JB, Gaymard B, Marsault C, Agid Y, Le Bihan D (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10(11):1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Grezes J, Costes N (1998) Top-down effect of strategy on the perception of human biological motion: a PET investigation. Cogn Neuropsychol 15(6–8):553–582

    Article  Google Scholar 

  • Grezes J, Decety J (2001) Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp 12(1):1–19

    Article  PubMed  CAS  Google Scholar 

  • Grillner S (1975) Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55(2):247–304

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8:233–261

    Article  PubMed  CAS  Google Scholar 

  • Hanakawa T (2006) Neuroimaging of standing and walking: special emphasis on Parkinsonian gait. Parkinsonism Relat Disord 12(Suppl 2):S70–S75

    Article  Google Scholar 

  • Holschneider DP, Maarek JM (2004) Mapping brain function in freely moving subjects. Neurosci Biobehav Rev 28(5):449–461

    Article  PubMed  Google Scholar 

  • Iacoboni M, Dapretto M (2006) The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci 7(12):942–951

    Article  PubMed  CAS  Google Scholar 

  • Iacoboni M, Mazziotta JC (2007) Mirror neuron system: basic findings and clinical applications. Ann Neurol 62(3):213–218

    Article  PubMed  Google Scholar 

  • Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286(5449):2526–2528

    Article  PubMed  CAS  Google Scholar 

  • Iansek R, Ismail NH, Bruce M, Huxham FE, Morris ME (2001) Frontal gait apraxia. Pathophysiological mechanisms and rehabilitation. Adv Neurol 87:363–374

    PubMed  CAS  Google Scholar 

  • Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T (2004) Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22(4):1722–1731

    Article  PubMed  Google Scholar 

  • Johnson SH, Rotte M, Grafton ST, Hinrichs H, Gazzaniga MS, Heinze HJ (2002) Selective activation of a parietofrontal circuit during implicitly imagined prehension. Neuroimage 17(4):1693–1704

    Article  PubMed  CAS  Google Scholar 

  • Kapreli E, Athanasopoulos S, Papathanasiou M, Van Hecke P, Strimpakos N, Gouliamos A, Peeters R, Sunaert S (2006) Lateralization of brain activity during lower limb joints movement. An fMRI study. Neuroimage 32(4):1709–1721

    Article  PubMed  Google Scholar 

  • Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10(3):120–131

    Article  PubMed  CAS  Google Scholar 

  • MacKay-Lyons M (2002) Central pattern generation of locomotion: a review of the evidence. Phys Ther 82(1):69–83

    PubMed  Google Scholar 

  • Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J (2003) Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp 19(1):47–62

    Article  PubMed  Google Scholar 

  • Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H (1999) Brain structures related to active and passive finger movements in man. Brain 122(Pt 10):1989–1997

    Article  PubMed  Google Scholar 

  • Mishina M, Senda M, Ishii K, Ohyama M, Kitamura S, Katayama Y (1999) Cerebellar activation during ataxic gait in olivopontocerebellar atrophy: a PET study. Acta Neurol Scand 100(6):369–376

    PubMed  CAS  Google Scholar 

  • Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14(5):1186–1192

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Matsuyama K, Mori F, Nakajima K (2001) Supraspinal sites that induce locomotion in the vertebrate central nervous system. Adv Neurol 87:25–40

    PubMed  CAS  Google Scholar 

  • Nielsen JB (2003) How we walk: central control of muscle activity during human walking. Neuroscientist 9(3):195–204

    Article  PubMed  Google Scholar 

  • Nutt JG, Horak FB (2004) Classification of balance and gait disorders. In: Bronstein AM, Brandt T, Woollacott MH, Nutt JG (eds) Clinical disorders of balance, posture and gait, 2nd edn. Arnold, London, pp 63–73

    Google Scholar 

  • Nutt JG, Marsden CD, Thompson PD (1993) Human walking and higher-level gait disorders, particularly in the elderly. Neurology 43(2):268–279

    PubMed  CAS  Google Scholar 

  • Ouchi Y, Okada H, Yoshikawa E, Nobezawa S, Futatsubashi M (1999) Brain activation during maintenance of standing postures in humans. Brain 122(Pt 2):329–338

    Article  PubMed  Google Scholar 

  • Patla AE (2004) Adaptive human locomotion: influence of neural, biological, and mechanical factors on control mechanisms. In: Bronstein AM, Brandt T, Woollacott MH, Nutt JG (eds) Clinical disorders of balance, posture and gait, 2nd edn edn. Arnold, London, pp 20–38

    Google Scholar 

  • Penny WD, Holmes AJ (2007) Random effects analysis. In: Friston K, Ashburner J, Kiebel S, Nichols T, Penny W (eds) Statistical parametric mapping: the analysis of functional brain images. Academic Press, London, pp 156–165

    Google Scholar 

  • Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11(6):663–672

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153(2):146–157

    Article  PubMed  Google Scholar 

  • Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86(1):89–154

    Article  PubMed  Google Scholar 

  • Sahyoun C, Floyer-Lea A, Johansen-Berg H, Matthews PM (2004) Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. Neuroimage 21(2):568–575

    Article  PubMed  CAS  Google Scholar 

  • Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40(1–2):28–121

    PubMed  CAS  Google Scholar 

  • Shibasaki H, Hallett M (2006) What is the Bereitschaftspotential? Clin Neurophysiol 117(11):2341–2356

    Article  PubMed  Google Scholar 

  • Slobounov S, Wu T, Hallett M (2006) Neural basis subserving the detection of postural instability: an fMRI study. Motor Control 10(1):69–89

    PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain : 3-dimensional proportional system : an approach to medical cerebral imaging. Thieme Medical, Stuttgart, 122 p

    Google Scholar 

  • Thompson PD, Marsden CD (1987) Gait disorder of subcortical arteriosclerotic encephalopathy: Binswanger’s disease. Mov Disord 2(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Tyrrell PJ (1994) Apraxia of gait or higher level gait disorders: review and description of two cases of progressive gait disturbance due to frontal lobe degeneration. J R Soc Med 87(8):454–456

    PubMed  CAS  Google Scholar 

  • Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel JF and others (2005): Comparative overview of brain perfusion imaging techniques. Stroke 36(9):e83–e99.

    Article  PubMed  Google Scholar 

  • Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4(1):58–73

    Article  Google Scholar 

  • Zentgraf K, Stark R, Reiser M, Kunzell S, Schienle A, Kirsch P, Walter B, Vaitl D, Munzert J (2005) Differential activation of pre-SMA and SMA proper during action observation: effects of instructions. Neuroimage 26(3):662–672

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported jointly by the National Science Council Taiwan (NSC 96-2321-B-182-002-MY2) and ChangGung Memorial Hospital Medical Research Project (CMRPG360821). The facility for image analysis was supported by the biomedical engineering centre in the ChangGung University. The authors would like to thank the helpful discussion and comment from the Department of Neurology, Cardinal Tien Hospital, YungHo branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiunJie Wang.

Additional information

YauYau Wai and ChiHong Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Wai, Y., Kuo, B. et al. Cortical control of gait in healthy humans: an fMRI study. J Neural Transm 115, 1149–1158 (2008). https://doi.org/10.1007/s00702-008-0058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0058-z

Keywords

Navigation