Skip to main content

Advertisement

Log in

Changes in number of water-filled vesicles of choroid plexus in early and late phase of experimental rabbit subarachnoid hemorrhage model; the role of petrous ganglion of glossopharyngeal nerve

  • Experimental Research - Vascular
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Cerebrospinal fluid (CSF) secretion may be increased in the early phases of subarachnoid hemorrhage (SAH), possibly via ischemic glossopharyngeal nerve discharges, and decreased due to glossopharyngeal nerve degeneration in the late phase of SAH; but this reflex pathway has not been definitively investigated. We studied the relationship between petrous ganglion of the glossopharyngeal nerve (GPN) and water vesicles of the choroid plexus (CP) in the early and late phases of SAH.

Methods

This study was conducted on 30 rabbits, divided into four groups, with five rabbits in the control group (group I), five rabbits in the sham group (Group II), and 20 rabbits in the SAH group. In the SAH group, five of the animals were decapitated after 4 days of cisternal blood injections (Group III), and the other 15 animals were decapitated after 20 days of injections (Group IV). The Petrous Ganglia and CPs of lateral ventricles were removed and stained for stereological analysis.

Results

The mean number of follicles per cubic millimeter was 5.3 ± 1.2 the in control group (Group I), 4.5 ± 0.9 in the sham group (Group II), 16.60 ± 3.77 the in early decapitated group (Group III), and 4.30 ± 0.84 in the late decapitated group (Group IV). The mean number of degenerated neuron density of petrous ganglions was 6 ± 2, 50 ± 6, 742 ± 96, and 2.420 ± 350 in the control (Group I), sham (Group II), early decapitated (Group III), and late decapitated group (Group IV), respectively. The mean number of water vesicles was statistically different after SAH between the early decapitated group (group III) and the late decapitated group (group IV) (P < 0.05).

Conclusions

We studied the relationship between petrous ganglion cells of the GPN and water vesicles of CP in the early and late phases of SAH, and found that CP vesicles are increased in the early phase of SAH due to irritation of GPN, and decreased in the late phase due to ischemic insult of the petrous ganglion and parasympathetic innervation of the CP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figs. 2 and 3
Figs. 4 and 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aydin MD, Akyol-Salman I, Sahin O (2005) Histopathological changes in ciliary ganglion of rabbits with subarachnoid hemorrhage. Int J Neurosci 115:1595–1602

    Article  PubMed  Google Scholar 

  2. Aydin MD, Bayram E, Atalay C, Aydin N, Erdogan AR, Gundogdu C, Diyarbakirli S (2006) The role of neuron numbers of the petrosal ganglion in the determination of blood pressure. An experimental study. Minim Invasive Neurosurg 49:359–361

    Article  CAS  PubMed  Google Scholar 

  3. Aydin MD, Erdogan AR, Cevli SC, Gundogdu C, Dane S, Diyarbakirli S (2006) Ganglionary mechanisms of spasticity and ileus in cerebral hemorrhage: an experimental study. Int J Dev Neurosci 24:455–459

    Article  PubMed  Google Scholar 

  4. Aydin MD, Kanat A, Yilmaz A, Cakir M, Emet M, Cakir Z, Aslan S, Altas S, Gundogdu C (2011) The role of ischemic neurodegeneration of the nodose ganglia on cardiac arrest after subarachnoid hemorrhage: an experimental study. Exp Neurol 230:90–95

    Article  PubMed  Google Scholar 

  5. Aydin MD, Serarslan Y, Gundogdu C, Aydin N, Aygul R, Kotan D, Ulvi H, Onder A, Kanat A (2012) The Relationship between the neuron density of the trigeminal ganglion and the posterior communicating artery vasospasm in subarachnoid hemorrhage: an experimental study. Neurosurg Q 22(1):1–6

    Article  Google Scholar 

  6. Becker NH, Sutton CH (1963) Pathologic features of the choroid plexus: 1. Cytochemical effects of hypervitaminosis. Am J Pathol 43:1017–1030

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Bhat AR, Afzal Wani M, Kirmani AR (2011) Subarachnoid hemorrhage in Kashmir: causes, risk factors, and outcome. Asian J Neurosurg 6:57–71

    Article  PubMed Central  PubMed  Google Scholar 

  8. Brandner S, Xu Y, Schmidt C, Emtmann I, Buchfelder M, Kleindienst A (2012) Shunt-dependent hydrocephalus following subarachnoid hemorrhage correlates with increased S100B levels in cerebrospinal fluid and serum. Acta Neurochir Suppl 114:217–220

    Article  CAS  PubMed  Google Scholar 

  9. Cagiran E, Derbent A, Cagiran I, Yuksel UG, Dalbasti T (2013) Admission blood glucose and morbidity–mortality in subarachnoid hemorrhage patients. J Neurol Sci (Turkish) 30(1):168–177

    Google Scholar 

  10. Celik O, Ziyal MI (2013) A methodological remark on in vivo models of experimental subarachnoid hemorrhage. J Neurol Sci (Turkish) 30(4):844–845

    Google Scholar 

  11. Chorobski J, Penfield W (1932) Cerebral vasodilator nerves and their pathway from the medulla oblongata: with observations on the pial and intracerebral vascular plexus. Arch Neurol Psychiatr 28:1257–1289

    Article  Google Scholar 

  12. de Aguiar PH, Barros I, Paiva BL, Simm RF (2013) Removal of clots in subarachnoid space could reduce the vasospasm after subarachnoid hemorrhage. Acta Neurochir Suppl 115:91–93

    PubMed  Google Scholar 

  13. Eseoglu M, Yilmaz I, Karalar M, Aydin MD, Kayaci S, Gundogdu C, Gunaldi O, Onen MR (2014) The role of sympathectomy on the regulation of basilar artery volume changes in stenoocclusive carotid artery modeling after bilateral common carotid artery ligation: an animal model. Acta Neurochir (Wien). 2014 Feb 21. [Epub ahead of print] PMID: 24557449

  14. Germanwala AV, Huang J, Tamargo RJ (2010) Hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am 21:263–270

    Article  PubMed  Google Scholar 

  15. Hara H, Zhang QJ, Kuroyanagi T, Kobayashi S (1993) Parasympathetic cerebrovascular innervation: an anterograde tracing from the sphenopalatine ganglion in the rat. Neurosurgery 32:822–827

    Article  CAS  PubMed  Google Scholar 

  16. Hasan D, Vermeulen M, Wijdicks EF, Hijdra A, van Gijn J (1989) Management problems in acute hydrocephalus after subarachnoid hemorrhage. Stroke 20:747–753

    Article  CAS  PubMed  Google Scholar 

  17. Izumi H, Karita K (1991) Vasodilator responses following intracranial stimulation of the trigeminal, facial and glossopharyngeal nerves in cat gingiva. Brain Res 560:71–75

    Article  CAS  PubMed  Google Scholar 

  18. Kanat A, Epstein CR (2010) Challenges to neurosurgical professionalism. Clin Neurol Neurosurg 112:839–843

    Article  PubMed  Google Scholar 

  19. Kanat A, Turkmenoglu O, Aydin MD, Yolas C, Aydin N, Gursan N, Tumkaya L, Demir R (2013) Toward changing of the pathophysiologic basis of acute hydrocephalus after subarachnoid hemorrhage: a preliminary experimental study. World Neurosurg 80(3–4):390–395

    Article  PubMed  Google Scholar 

  20. Kanat A, Yazar U, Kazdal H, Yilmaz A, Musluman M (2009) Neurosurgery is a profession. Neurol Neurochir Pol 43:286–288

    PubMed  Google Scholar 

  21. Kanat A, Yilmaz A, Aydin MD, Musluman M, Altas S, Gursan N (2010) Role of degenerated neuron density of dorsal root ganglion on anterior spinal artery vasospasm in subarachnoid hemorrhage: experimental study. Acta Neurochir (Wien) 152:2167–2172

    Article  Google Scholar 

  22. Kanat A (2013) Letter to: Pathophysiology of Acute Hydrocephalus following Subarachnoid Hemorrhage. World Neurosurg.pii: S1878-8750(13)00209

  23. Kayaci S, Kanat A, Aydin MD, Musluman AM, Eseoglu M, Karalar M, Gundogdu C (2011) The role of neuron density of the stellate ganglion on regulation of the basilar artery volume in subarachnoid hemorrhage: An experimental study. Auton Neurosci 7(165):163–167

    Article  Google Scholar 

  24. Kumar A, Kato Y, Hayakawa M, Junpei O, Watabe T, Imizu S, Oguri D, Hirose Y (2011) Recent advances in diagnostic approaches for sub-arachnoid hemorrhage. Asian J Neurosurg 6:94–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kwon JH, Sung SK, Song YJ, Choi HJ, Huh JT, Kim HD (2008) Predisposing factors related to shunt-dependent chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Kor Neurosurg Soc 43:177–181

    Article  Google Scholar 

  26. Lackner P, Vahmjanin A, Hu Q, Krafft PR, Rolland W, Zhang JH (2013) Chronic hydrocephalus after experimental subarachnoid hemorrhage. PLoS ONE 8(7):e69571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lindvall M, Edvinsson L, Owman C (1977) Histochemical study on regional differences in the cholinergic nerve supply of the choroid plexus from various laboratory animals. Exp Neurol 55:152–159

    Article  CAS  PubMed  Google Scholar 

  28. Lindvall M, Edvinsson L, Owman C (1978) Histochemical, ultrastructural, and functional evidence for a neurogenic control of CSF production from the choroid plexus. Adv Neurol 20:111–120

    CAS  PubMed  Google Scholar 

  29. Niemelä M, Marbacher S (2013) Acute hydrocephalus after subarachnoid hemorrhage—can it be caused by water vesicles of choroid plexuses? World Neurosurg 80(3–4):307–308

    Article  PubMed  Google Scholar 

  30. Palade C, Ciurea AV, Nica DA, Savu R, Moisa HA (2013) Interference of apoptosis in the pathophysiology of subarachnoid hemorrhage. Asian J Neurosurg 8:106–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Poon WS, Ng SC, Wong GK, Wong LY, Chan MT (2008) Chronic hydrocephalus that requires shunting in aneurysmal subarachnoid haemorrhage [a-SAH]: its impact on clinical outcome. Acta Neurochir Suppl 102:129–130

    Article  CAS  PubMed  Google Scholar 

  32. Segal MB, Pollay M (1977) The secretion of cerebrospinalfluid. Exp Eye Res 25 Suppl:127–148

    Article  CAS  PubMed  Google Scholar 

  33. Shah AH, Bregy A, Komotar RJ (2013) Response to Letter to Editor- Pathophysiology of Acute Hydrocephalus after Subarachnoid Hemorrhage.World Neurosurg. 12.pii: S1878-8750(13)00967-4

  34. Shah AH, Komotar RJ (2013) Pathophysiology of acute hydrocephalus following subarachnoid hemorrhage. World Neurosurg. doi:10.1016/j.wneu.2013.08.006

    Google Scholar 

  35. Soh KBK (1999) The glossopharyngeal nerve. Glossopharyngeal neuralgia and the eagle’s syndrome—current concepts and management. Singap Med J 40:10

    Google Scholar 

  36. Tuzgen S, Kucukyuruk B, Aydin S, Ozlen F, Kizilkilic O, Abuzayed B (2012) Decompressive craniectomy in patients with cerebral infarction due to malignant vasospasm after aneurysmal subarachnoid hemorrhage. J Neurosci Rural Pract 3:251–255

    Article  PubMed Central  PubMed  Google Scholar 

  37. Yolas C, Kanat A, Aydin MD, Turkmenoglu ON, Gundogdu C (2014) Important casual relationship between carotid body and Glossopharyngeal nerve following experimental subarachnoid hemorrhage in rabbits. First report. J Neurol Sci 336(1-2):220–226

    Article  PubMed  Google Scholar 

  38. Zhang Y, Wang T, Zhang JH, Zhang J, Qin X (2011) Subarachnoid hemorrhage in old patients in Chongqing China. Acta Neurochir Suppl. 110(Pt 1):245–248

    Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Kanat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, M.D., Kanat, A., Turkmenoglu, O.N. et al. Changes in number of water-filled vesicles of choroid plexus in early and late phase of experimental rabbit subarachnoid hemorrhage model; the role of petrous ganglion of glossopharyngeal nerve. Acta Neurochir 156, 1311–1317 (2014). https://doi.org/10.1007/s00701-014-2088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-014-2088-7

Keywords

Navigation