Skip to main content

Advertisement

Log in

Discrepancies between the MRI- and the electrophysiologically defined subthalamic nucleus

  • Clinical Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

The aim of our study was to evaluate discrepancies between the electrophysiologically and MRI-defined subthalamic nucleus (STN) in order to contribute to the ongoing debate of whether or not microelectrode recording (MER) provides additional information to image-guided targeting in deep brain stimulation.

Methods

Forty-four STNs in 22 patients with Parkinson’s disease were investigated. The three-dimensional MRI-defined STN was derived from segmentations of axial and coronal T2-weighted images. The electrophysiological STNs were generated from intraoperative MERs in 1,487 locations. The stereotactical coordinates of positive and negative STN recordings were re-imported to the planning software, where a three-dimensional reconstruction of the electrophysiological STN was performed and fused to the MRI data set. The estimated borders of the MRI- and MER-STN were compared. For statistical analysis Student's t, Mann-Whitney rank sum and Fisher's exact tests were used.

Results

MER-STN volumes, which were found outside the MRI-STN, ranged from 0 mm3 to 87 mm3 (mean: 45 mm3). A mean of 44% of the MER-STN volumes exceeded the MRI-STN (maximum: 85.1%; minimum: 15.1 %); 53.4% (n = 793) of the microelectrode recordings were concordant and 46.6% (n = 694) discordant with the MRI-defined anatomical STN. Regarding the dorsal borders, we found discrepancies between the MER- and MRI-STN of 0.27 mm (= mean; SD: 0.51 mm) on the first operated side and 1.51 mm (SD: 1.5 mm) on the second (p = 0.010, t-test).

Conclusions

MER provides additional information to high-resolution anatomical MR images and may help to detect the amount and direction of brain shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acar F, Miller JP, Berk MC, Anderson G, Burchiel KJ (2007) Safety of anterior commissure-posterior commissure-based target calculation of the subthalamic nucleus in functional stereotactic procedures. Stereotact Funct Neurosurg 85:287–291

    Article  PubMed  Google Scholar 

  2. Ashkan K, Blomstedt P, Zrinzo L, Tisch S, Yousry T, Limousin-Dowsey P, Hariz MI (2007) Variability of the subthalamic nucleus: the case for direct MRI guided targeting. Br J Neurosurg 21:197–200

    Article  PubMed  CAS  Google Scholar 

  3. Bejjani BP, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I, Bonnet AM, Marsault C, Agid Y, Philippon J, Cornu P (2000) Bilateral subthalamic stimulation for Parkinson's disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92:615–625

    Article  PubMed  CAS  Google Scholar 

  4. Benabid AL, Krack PP, Benazzouz A, Limousin P, Koudsie A, Pollak P (2000) Deep brain stimulation of the subthalamic nucleus for Parkinson's disease: methodologic aspects and clinical criteria. Neurology 55:S40–S44

    PubMed  CAS  Google Scholar 

  5. Benabid AL, Koudsie A, Fraix V, Benazzouz A, Chabardes S, LeBas JF, Polak P (2001) High-frequency stimulation of the subthalamic nucleus in advanced Parkinson’s disease: An 8-year experience. J Neurosurg 94:376A

    Google Scholar 

  6. Binder DK, Rau GM, Starr PA (2005) Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery 56:722–732, discussion 722–732

    Article  PubMed  Google Scholar 

  7. Breit S, LeBas JF, Koudsie A, Schulz J, Benazzouz A, Pollak P, Benabid AL (2006) Pretargeting for the implantation of stimulation electrodes into the subthalamic nucleus: a comparative study of magnetic resonance imaging and ventriculography. Neurosurgery 58:ONS83–ONS95

    Article  PubMed  Google Scholar 

  8. Burchiel KJ, Nguyen TT, Coombs BD, Szumoski J (1996) MRI distortion and stereotactic neurosurgery using the Cosman-Roberts-Wells and Leksell frames. Stereotact Funct Neurosurg 66:123–136

    Article  PubMed  CAS  Google Scholar 

  9. Caire F, Ouchchane L, Coste J, Gabrillargues J, Derost P, Ulla M, Durif F, Lemaire JJ (2009) Subthalamic nucleus location: relationships between stereotactic AC-PC-based diagrams and MRI anatomy-based contours. Stereotact Funct Neurosurg 87:337–347

    Article  PubMed  Google Scholar 

  10. Coste J, Ouchchane L, Sarry L, Derost P, Durif F, Gabrillargues J, Hemm S, Lemaire JJ (2009) New electrophysiological mapping combined with MRI in parkinsonian's subthalamic region. Eur J Neurosci 29:1627–1633

    Article  PubMed  CAS  Google Scholar 

  11. Cuny E, Guehl D, Burbaud P, Gross C, Dousset V, Rougier A (2002) Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. J Neurosurg 97:591–597

    Article  PubMed  Google Scholar 

  12. Danish SF, Jaggi JL, Moyer JT, Finkel L, Baltuch GH (2006) Conventional MRI is inadequate to delineate the relationship between the red nucleus and subthalamic nucleus in Parkinson's disease. Stereotact Funct Neurosurg 84:12–18

    Article  PubMed  Google Scholar 

  13. Deep Brain Stimulation Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N Engl J Med 345:956–963

    Article  Google Scholar 

  14. Dormont D, Ricciardi KG, Tande D, Parain K, Menuel C, Galanaud D, Navarro S, Cornu P, Agid Y, Yelnik J (2004) Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol 25:1516–1523

    PubMed  Google Scholar 

  15. Duffner F, Schiffbauer H, Breit S, Friese S, Freudenstein D (2002) Relevance of image fusion for target point determination in functional neurosurgery. Acta Neurochir (Wien) 144:445–451

    Article  CAS  Google Scholar 

  16. Elias WJ, Fu KM, Frysinger RC (2007) Cortical and subcortical brain shift during stereotactic procedures. J Neurosurg 107:983–988

    Article  PubMed  Google Scholar 

  17. Forster A, Eljamel MS, Varma TR, Tulley M, Latimer M (1999) Audit of neurophysiological recording during movement disorder surgery. Stereotact Funct Neurosurg 72:154–156

    Article  PubMed  CAS  Google Scholar 

  18. Gorgulho A, De Salles AA, Frighetto L, Behnke E (2005) Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery. J Neurosurg 102:888–896

    Article  PubMed  Google Scholar 

  19. Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor. Mov Disord 21(Suppl 14):S259–S283

    Article  PubMed  Google Scholar 

  20. Halpern CH, Danish SF, Baltuch GH, Jaggi JL (2008) Brain shift during deep brain stimulation surgery for Parkinson’s disease. Stereotact Funct Neurosurg 86(1):37–43

    Article  PubMed  Google Scholar 

  21. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20

    Article  PubMed  Google Scholar 

  22. Hamani C, Richter EO, Andrade-Souza Y, Hutchison W, Saint-Cyr JA, Lozano AM (2005) Correspondence of microelectrode mapping with magnetic resonance imaging for subthalamic nucleus procedures. Surg Neurol 63:249–253, discussion 253

    Article  PubMed  Google Scholar 

  23. Hariz MI (2002) Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact Funct Neurosurg 78:146–157

    Article  PubMed  Google Scholar 

  24. Hunsche S, Sauner D, Maarouf M, Poggenborg J, Lackner K, Sturm V, Treuer H (2009) Intraoperative X-ray detection and MRI-based quantification of brain shift effects subsequent to implantation of the first electrode in bilateral implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg 87:322–329

    Article  PubMed  Google Scholar 

  25. Israel Z, Burchiel KJ (2004) Microelectrode Recording in Movement Disorder Surgery. Thieme New York

  26. Keles GE, Lamborn KR, Berger MS (2003) Coregistration accuracy and detection of brain shift using intraoperative sononavigation during resection of hemispheric tumors. Neurosurgery 53:556–562, discussion 562–554

    Article  PubMed  Google Scholar 

  27. Lee C, Young B, Sanders MF (2006) The role of the supramammillary commissure in MR localization of the subthalamic nucleus. Stereotact Funct Neurosurg 84:193–204

    Article  PubMed  Google Scholar 

  28. Lemaire JJ, Durif F, Debilly B, Blanc O, Chazal J (2001) Deep brain stimulation in the subthalamic area for severe idiopathic Parkinson’s disease: location of plots in the preoperative phase and at the three month follow-up. Parkinson’s Relat Disord 7

  29. Lemaire JJ, Coste J, Ouchchane L, Caire F, Nuti C, Derost P, Cristini V, Gabrillargues J, Hemm S, Durif F, Chazal J (2007) Brain mapping in stereotactic surgery: a brief overview from the probabilistic targeting to the patient-based anatomic mapping. NeuroImage 37(Suppl 1):S109–S115

    Article  PubMed  Google Scholar 

  30. Magnotta VA, Gold S, Andreasen NC, Ehrhardt JC, Yuh WT (2000) Visualization of subthalamic nuclei with cortex attenuated inversion recovery MR imaging. NeuroImage 11:341–346

    Article  PubMed  CAS  Google Scholar 

  31. Maldonado IL, Roujeau T, Cif L, Gonzalez V, El-Fertit H, Vasques X, Bonafe A, Coubes P (2009) Magnetic resonance-based deep brain stimulation technique: a series of 478 consecutive implanted electrodes with no perioperative intracerebral hemorrhage. Neurosurgery 65:196–201, discussion 201–192

    Article  PubMed  Google Scholar 

  32. McClelland S 3rd, Ford B, Senatus PB, Winfield LM, Du YE, Pullman SL, Yu Q, Frucht SJ, McKhann GM 2nd, Goodman RR (2005) Subthalamic stimulation for Parkinson disease: determination of electrode location necessary for clinical efficacy. Neurosurg Focus 19:E12

    PubMed  Google Scholar 

  33. Miyagi Y, Shima F, Sasaki T (2007) Brain shift: an error factor during implantation of deep brain stimulation electrodes. J Neurosurg 107(5):989–997

    Article  PubMed  Google Scholar 

  34. Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS Jr, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM 3rd, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48:787–797, discussion 797–788

    PubMed  CAS  Google Scholar 

  35. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47:1070–1079, discussion 1079–1080

    Article  PubMed  CAS  Google Scholar 

  36. Okun MS, Vitek JL (2004) Lesion therapy for Parkinson's disease and other movement disorders: update and controversies. Mov Disord 19:375–389

    Article  PubMed  Google Scholar 

  37. Pallavaram S, Dawant BM, Remple MS, Neimat JS, Kao C, Konrad PE, D'Haese PF (2010) Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery. Int J Comput Assist Radiol Surg 5(3):221–228

    Article  PubMed  Google Scholar 

  38. Patel NK, Khan S, Gill SS (2008) Comparison of atlas- and magnetic-resonance-imaging-based stereotactic targeting of the subthalamic nucleus in the surgical treatment of Parkinson's disease. Stereotact Funct Neurosurg 86:153–161

    Article  PubMed  Google Scholar 

  39. Petersen EA, Holl EM, Martinez-Torres I, Foltynie T, Limousin P, Hariz MI, Zrinzo L (2010) Minimizing brain shift in stereotactic functional neurosurgery. Neurosurgery 67(3 Suppl Operative):ons213–ons221, discussion ons221

    Article  PubMed  Google Scholar 

  40. Pollo C, Meuli R, Maeder P, Vingerhoets F, Ghika J, Villemure JG (2003) Subthalamic nucleus deep brain stimulation for Parkinson's disease: magnetic resonance imaging targeting using visible anatomical landmarks. Stereotact Funct Neurosurg 80:76–81

    Article  PubMed  Google Scholar 

  41. Pralong E, Villemure JG, Bloch J, Pollo C, Daniels RT, Ghika J, Vingerhoets F, Tetreault MH, Debatisse D (2004) Quality index for the quantification of the information recorded along standard microelectrode tracks to the subthalamic nucleus in parkinsonian patients. Neurophysiol Clin 34:209–215

    Article  PubMed  Google Scholar 

  42. Rezai AR, Kopell BH, Gross RE, Vitek JL, Sharan AD, Limousin P, Benabid AL (2006) Deep brain stimulation for Parkinson's disease: surgical issues. Mov Disord 21(Suppl 14):S197–S218

    Article  PubMed  Google Scholar 

  43. Richter EO, Hoque T, Halliday W, Lozano AM, Saint-Cyr JA (2004) Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson disease. J Neurosurg 100:541–546

    Article  PubMed  Google Scholar 

  44. Saint-Cyr JA, Hoque T, Pereira LC, Dostrovsky JO, Hutchison WD, Mikulis DJ, Abosch A, Sime E, Lang AE, Lozano AM (2002) Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg 97:1152–1166

    Article  PubMed  Google Scholar 

  45. Sansur CA, Frysinger RC, Pouratian N, Fu KM, Bittl M, Oskouian RJ, Laws ER, Elias WJ (2007) Incidence of symptomatic hemorrhage after stereotactic electrode placement. J Neurosurg 107:998–1003

    Article  PubMed  Google Scholar 

  46. Schiff SJ, Dunagan BK, Worth RM (2002) Failure of single-unit neuronal activity to differentiate globus pallidus internus and externus in Parkinson disease. J Neurosurg 97:119–128

    Article  PubMed  Google Scholar 

  47. Schlaier J, Schoedel P, Lange M, Winkler J, Warnat J, Dorenbeck U, Brawanski A (2005) Reliability of atlas-derived coordinates in deep brain stimulation. Acta Neurochir (Wien) 147:1175–1180, discussion 1180

    Article  CAS  Google Scholar 

  48. Schuurman PR, de Bie RM, Majoie CB, Speelman JD, Bosch DA (1999) A prospective comparison between three-dimensional magnetic resonance imaging and ventriculography for target-coordinate determination in frame-based functional stereotactic neurosurgery. J Neurosurg 91:911–914

    Article  PubMed  CAS  Google Scholar 

  49. Slavin KV, Thulborn KR, Wess C, Nersesyan H (2006) Direct visualization of the human subthalamic nucleus with 3 T MR imaging. AJNR Am J Neuroradiol 27:80–84

    PubMed  CAS  Google Scholar 

  50. Starr PA, Vitek JL, DeLong M, Bakay RA (1999) Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44:303–313, discussion 313–304

    Article  PubMed  CAS  Google Scholar 

  51. Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A, Marks WJ Jr (2002) Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 97:370–387

    Article  PubMed  Google Scholar 

  52. Sterio D, Zonenshayn M, Mogilner AY, Rezai AR, Kiprovski K, Kelly PJ, Beric A (2002) Neurophysiological refinement of subthalamic nucleus targeting. Neurosurgery 50:58–67, discussion 67–59

    PubMed  Google Scholar 

  53. Sumanaweera TS, Adler JR Jr, Napel S, Glover GH (1994) Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery. Neurosurgery 35:696–703, discussion 703–694

    Article  PubMed  CAS  Google Scholar 

  54. Voges J, Hilker R, Botzel K, Kiening KL, Kloss M, Kupsch A, Schnitzler A, Schneider GH, Steude U, Deuschl G, Pinsker MO (2007) Thirty days complication rate following surgery performed for deep-brain-stimulation. Mov Disord 22:1486–1489

    Article  PubMed  Google Scholar 

  55. Walton L, Hampshire A, Forster DM, Kemeny AA (1995) Stereotactic localization using magnetic resonance imaging. Stereotact Funct Neurosurg 64(Suppl 1):155–163

    PubMed  Google Scholar 

  56. Walton L, Hampshire A, Forster DM, Kemeny AA (1996) Accuracy of stereotactic localisation using magnetic resonance imaging: a comparison between two- and three-dimensional studies. Stereotact Funct Neurosurg 66(Suppl 1):49–56

    Article  PubMed  Google Scholar 

  57. Winkler D, Tittgemeyer M, Schwarz J, Preul C, Strecker K, Meixensberger J (2005) The first evaluation of brain shift during functional neurosurgery by deformation field analysis. J Neurol Neurosurg Psychiatry 76:1161–1163

    Article  PubMed  CAS  Google Scholar 

  58. Ye FQ, Allen PS, Martin WR (1996) Basal ganglia iron content in Parkinson's disease measured with magnetic resonance. Mov Disord 11:243–249

    Article  PubMed  CAS  Google Scholar 

  59. Zhu XL, Hamel W, Schrader B, Weinert D, Hedderich J, Herzog J, Volkmann J, Deuschl G, Muller D, Mehdorn HM (2002) Magnetic resonance imaging-based morphometry and landmark correlation of basal ganglia nuclei. Acta Neurochir (Wien) 144:959–969, discussion 968–959

    Article  CAS  Google Scholar 

  60. Zonenshayn M, Rezai AR, Mogilner AY, Beric A, Sterio D, Kelly PJ (2000) Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery 47:282–292, discussion 292–284

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Ralf Schlaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlaier, J.R., Habermeyer, C., Warnat, J. et al. Discrepancies between the MRI- and the electrophysiologically defined subthalamic nucleus. Acta Neurochir 153, 2307–2318 (2011). https://doi.org/10.1007/s00701-011-1081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-011-1081-7

Keywords

Navigation