Skip to main content
Log in

Constructing lattice rules based on weighted degree of exactness and worst case error

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Recall that an integration rule is said to have a trigonometric degree of exactness m if it integrates exactly all trigonometric polynomials of degree ≤ m. In this paper we focus on high dimensions, say, d ≫ 6. We introduce three notions of weighted degree of exactness, where we use weights to characterize the anisotropicness of the integrand with respect to successive coordinate directions. Unlike in the classical unweighted setting, the minimal number of integration points needed to achieve a prescribed weighted degree of exactness no longer grows exponentially with d provided that the weights decay sufficiently fast. We present a component-by-component algorithm for the construction of a rank-1 lattice rule such that (i) it has a prescribed weighted degree of exactness, and (ii) its worst case error achieves the optimal rate of convergence in a weighted Korobov space. Then we introduce a modified, more practical, version of this algorithm which maximizes the weighted degree of exactness in each step of the construction. Both algorithms are illustrated by numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckers M, Cools R (1993) A relation between cubature formulae of trigonometric degree and lattice rules. In: Brass H, Hämmerlin G (eds) Numerical integration IV (Oberwolfach, 1992). Birkhäuser Verlag, pp 13–24

  2. Cools R, Govaert H (2003) Five- and six-dimensional lattice rules generated by structured matrices. J Complexity 19(6): 715–729

    Article  MATH  MathSciNet  Google Scholar 

  3. Cools R, Lyness JN (2001) Three- and four-dimensional K-optimal lattice rules of moderate trigonometric degree. Math Comput 70(236): 1549–1567

    Article  MATH  MathSciNet  Google Scholar 

  4. Cools R, Nuyens D (2008) A Belgian view on lattice rules. In: Keller A, Heinrich S, Niederreiter H (eds) Monte Carlo and Quasi-Monte Carlo methods 2006. Springer-Verlag, New York, pp 3–21

  5. Cools R, Novak E, Ritter K (1999) Smolyak’s construction of cubature formulas of arbitrary trigonometric degree. Computing 62(2): 147–162

    Article  MATH  MathSciNet  Google Scholar 

  6. Cools R (1997) Constructing cubature formulae: the science behind the art. Acta Numer 6: 1–54

    Article  MathSciNet  Google Scholar 

  7. Cools R, Reztsov AV (1997) Different quality indexes for lattice rules. J Complexity 13(2): 235–258

    Article  MATH  MathSciNet  Google Scholar 

  8. Cools R, Sloan IH (1996) Minimal cubature formulae of trigonometric degree. Math Comput 65(216): 1583–1600

    Article  MATH  MathSciNet  Google Scholar 

  9. Dick J (2004) On the convergence rate of the component-by-component construction of good lattice rules. J Complexity 20(4): 493–522

    Article  MATH  MathSciNet  Google Scholar 

  10. Dick J, Pillichshammer F, Waterhouse B (2008) The construction of good extensible rank-1 lattices. Math Comput 77(264): 2345–2373

    Article  MathSciNet  Google Scholar 

  11. Kuo FY (2003) Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J Complexity 19: 301–320

    Article  MATH  MathSciNet  Google Scholar 

  12. Kuo FY, Sloan IH, Woźniakowski H (2006) Lattice rules for multivariate approximation in the worst case setting. In: Niederreiter H, Talay D (eds) Monte Carlo and Quasi-Monte Carlo methods 2004. Springer-Verlag, New York, pp 289–330

    Chapter  Google Scholar 

  13. Niederreiter H (1992) Random number generation and quasi-Monte Carlo methods. In: Regional Conference Series in Applied Mathematics, no. 63. SIAM

  14. Novak E, Woźniakowski H (2008) Tractability of multivariate problems, vol I: linear information. In: EMS Tracts in Mathematics, vol 6. European Mathematical Society Publishing House

  15. Nuyens D, Cools R (2006) Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math Comput 75(2): 903–920

    Article  MATH  MathSciNet  Google Scholar 

  16. Sloan IH, Joe S (1994) Lattice methods for multiple integration. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  17. Sloan IH, Woźniakowski H (1998) When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J Complexity 14(1): 1–33

    Article  MATH  MathSciNet  Google Scholar 

  18. Sloan IH, Woźniakowski H (2001) Tractability of multivariate integration for weighted Korobov classes. J Complexity 17(4): 697–721

    Article  MATH  MathSciNet  Google Scholar 

  19. Zaremba SK (1972) La méthode des “bons treillis” pour le calcul des intégrales multiples. In: Zaremba SK (ed) Applications of number theory to numerical analysis/Applications de la Théorie des Nombres à l’Analyse Numérique. Academic Press, New York, pp 39–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Nuyens.

Additional information

Communicated by Xiaojun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cools, R., Kuo, F.Y. & Nuyens, D. Constructing lattice rules based on weighted degree of exactness and worst case error. Computing 87, 63–89 (2010). https://doi.org/10.1007/s00607-009-0076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0076-1

Keywords

Mathematics Subject Classification (2000)

Navigation