Skip to main content
Log in

Despite admixing two closely related Carex species differ in their regional morphological differentiation

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Rarer species are expected to show stronger geographic differentiation than more common species. However, if rare species hybridize with common species, differentiation may be quite similar between the two due to genetic admixing via backcrossing. We studied morphological differentiation of plants of 21 natural populations of the more common Carex flava, 16 of the less common Carex viridula and 6 of their hybrids from 27 sites in three climatically different regions, Estonia, Lowland Switzerland and Highland Switzerland. Univariate ANOVA and multivariate principal component analysis of 14 morphological characters, describing both vegetative and reproductive characters, allowed to clearly distinguish C. flava from C. viridula. Carex viridula populations showed stronger regional variation than C. flava. Hybrids had both intermediate and transgressive characters in Switzerland and Estonia. On average, hybrids from Lowland Switzerland were more similar to Swiss C. flava than to C. viridula, while hybrids from Estonia were morphologically intermediate between plants of Estonian populations of the parental species. The results suggest that within-region genetic admixing between species has limited potential to lead to region-specific similarity between species, at least in our model system of the C. flava complex. We conclude that C. flava and C. viridula are clearly distinct species and that, despite hybridization, geographic differentiation is more pronounced in the less common C. viridula than in C. flava.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agbo CU, da Silva JAT (2014) Expression of heterosis and heritability in vegetative traits of Gongronema latifolia. Open J Genet 4:146–156. doi:10.4236/ojgen.2014.42015

    Article  Google Scholar 

  • Anderson E (1949) Introgressive hybridization, 1st edn. Wiley, New York

    Google Scholar 

  • Arnold ML (1992) Natural hybridization as an evolutionary process. Annual Rev Ecol Syst 23:237–261. doi:10.1146/annurev.es.23.110192.001321

    Article  Google Scholar 

  • Arnold ML (1994) Natural hybridization and Louisiana irises. Bioscience 44:141–147. doi:10.2307/1312250

    Article  Google Scholar 

  • Arnold ML (2006) Evolution through genetic exchange, 1st edn. Oxford University Press Inc., New York

    Google Scholar 

  • Baur B, Schmid B (1996) Spatial and temporal patterns of genetic diversity within species. In: Gaston KJ (ed) Biodiversity: a biology of numbers and difference. Blackwell, Oxford, pp 169–201

    Google Scholar 

  • Blackstock N (2007) A reassessment of the yellow sedges Carex flava L. agg. (Cyperaceae) in the British Isles. PhD Thesis, University of Lancaster, Lancaster

  • Blackstock N, Ashton PA (2010) Genetic markers and morphometric analysis reveal past hybridization and introgression in putative Carex flava L. s. str. (Cyperaceae) hybrid populations. Pl Syst Evol 287:37–47. doi:10.1007/s00606-010-0287-0

    Article  CAS  Google Scholar 

  • Brennan AC, Hiscock SJ, Abbott RJ (2016) Genomic architecture of phenotypic divergence between two hybridizing plant species along an elevational gradient. AoB Plants 8:plw022. doi:10.1093/aobpla/plw022

    Article  PubMed  PubMed Central  Google Scholar 

  • Cayouette J, Catling PM (1992) Hybridization in the genus Carex with special reference to North America. Bot Rev 58:351–440. doi:10.1007/BF02858773

    Article  Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1948) Experimental studies on the nature of species. III. Environresponses of climatic races of Achillea. Carnegie Institution, Washington

    Google Scholar 

  • Crins WJ, Ball PW (1989a) Taxonomy of the Carex flava complex (Cyperaceae) in North America and northern Eurasia. I. Numerical taxonomy and character analysis. Canad J Bot 67:1032–1047. doi:10.1139/b89-137

    Article  Google Scholar 

  • Crins WJ, Ball PW (1989b) Taxonomy of the Carex flava complex (Cyperaceae) in North America and northern Eurasia. II. Taxonomic treatment. Canad J Bot 67:1048–1065. doi:10.1139/b89-138

    Article  Google Scholar 

  • Davies EW (1953a) An experimental taxonomic study of some species of Carex with special reference to the C. flava aggregate. PhD Thesis, University of London, London

  • Davies EW (1953b) Notes on Carex flava and its allies. III. The taxonomy and morphology of the British representatives. Watsonia 3:74–79

    Google Scholar 

  • Davies EW (1953c) Notes on Carex flava and its allies. IV. Geographic distribution. Watsonia 3:80–84

    Google Scholar 

  • Davies EW (1955) The cytogenetics of Carex flava and its allies. Watsonia 3:129–137

    Google Scholar 

  • Ducarme V, Wesselingh RA (2005) Detecting hybridization in mixed populations of Rhinanthus minor and Rhinanthus angustifolius. Folia Geobot 40:151–161. doi:10.1007/BF02803231

    Article  Google Scholar 

  • Egorova TV (1999) The sedges (Carex L.) of Russia and adjacent states (within the limits of the former USSR). St.-Petersburg State Chemical Pharmaceutical Academy, St.-Petersburg & Missouri Botanical Garden Press, St. Louis

    Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Galbany-Casals M, Carnicero-Campmany P, Blanco-Moreno JM, Smissen RD (2012) Morphological and genetic evidence of contemporary intersectional hybridisation in Mediterranean Helichrysum (Asteraceae, Gnaphalieae). Pl Biol 14:789–800. doi:10.1111/j.1438-8677.2012.00568.x

    Article  CAS  Google Scholar 

  • Hahn MA, Rieseberg LH (2016) Genetic admixture and heterosis may enhance the invasiveness of common ragweed. Evol Appl 9:1–10. doi:10.1111/eva.12445

    Article  Google Scholar 

  • Hall D, Luquez V, Garcia VM, St Onge KR, Jansson S, Ingvarsson PK (2007) Adaptive population differentiation in phenology across a latitudinal gradient in European aspen (Populus tremula, L.): a comparison of neutral markers, candidate genes and phenotypic traits. Evolution 61:2849–2860. doi:10.1111/j.1558-5646.2007.00230.x

    Article  PubMed  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, Cambridge

    Google Scholar 

  • Hedrén M (1990) Problems in Carex jemtlandica and C. bergrothii (Cyperaceae) in Sweden. Sommerfeltia 11:109–115

    Google Scholar 

  • Hedrén M (2002) Patterns of allozyme and morphological differentiation in the Carex flava complex (Cyperaceae) in Fennoscandia. Nordic J Bot 22:257–301. doi:10.1111/j.1756-1051.2002.tb01373.x

    Article  Google Scholar 

  • Hegarty MJ, Hiscock SJ (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytol 165:411–423. doi:10.1111/j.1469-8137.2004.01253.x

    Article  CAS  PubMed  Google Scholar 

  • Hultén E, Fries M (1986) Atlas of North European vascular plants (north of the Tropic of Cancer). Koeltz scientific books, Königstein

    Google Scholar 

  • Janyszek M, Jagodziński Am, Janyszek S, Wrońska-Pilarek D (2008) Morphological variability of Carex spicata Huds. utricles among plant communities. Flora 203:386–395. doi:10.1016/j.flora.2007.06.007

    Article  Google Scholar 

  • Jiménez-Mejías P, Martín-Bravo S, Luceño M (2012) Systematics and taxonomy of Carex sect. Ceratocystis (Cyperaceae) in Europe: a molecular and cytogenetic approach. Syst Bot 37:382–398. doi:10.1600/036364412X635449

    Article  Google Scholar 

  • Jiménez-Mejías P, Luceño M, Martín-Bravo S (2014) Species boundaries within the southwest Old World populations of the Carex flava group (Cyperaceae). Syst Bot 39:117–131. doi:10.1600/036364414X677973

    Article  Google Scholar 

  • Jonas CS, Geber MA (1999) Variation among populations of Clarkia unguiculata (Onagraceae) along altitudinal and latitudinal gradients. Amer J Bot 86:333–343. doi:10.2307/2656755

    Article  CAS  Google Scholar 

  • Koopman J (2011) Carex Europaea: the genus Carex L. (Cyperaceae) in Europe, 1: accepted names, hybrids, synonyms, distribution, chromosome numbers. Margraf Publishers, Weikersheim

    Google Scholar 

  • Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Kuchel SD, Bruederle LP (2000) Allozyme data support a Eurasian origin for Carex viridula subsp. viridula var. viridula (Cyperaceae). Madroño 47:147–158

    Google Scholar 

  • Kukk T, Kull T (2005) Eesti taimede levikuatlas (Atlas of the Estonian flora). Estonian University of Life Sciences, Tartu

    Google Scholar 

  • Lamont BB, He T, Enright NJ, Krauss SL, Miller BP (2003) Anthropogenic disturbance promotes hybridization between Banksia species by altering their biology. J Evol Biol 16:551–557. doi:10.1046/j.1420-9101.2003.00548.x

    Article  CAS  PubMed  Google Scholar 

  • Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kremer A, Gerber S (2009) Species relative abundance and direction of introgression in oaks. Molec Ecol 18:2228–2242. doi:10.1111/j.1365-294X.2009.04137.x

    Article  CAS  PubMed  Google Scholar 

  • Lexer C, Joseph JA, van Loo M, Barbará T, Heinze B, Bartha D, Castiglione S, Fay MF, Buerkle CA (2010) Genomic admixture analysis in European Populus spp. reveals unexpected patterns of reproductive isolation and mating. Genetics 186:699–712. doi:10.1534/genetics.110.118828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe AJ, Abbott RJ (2003) A new British species, Senecio eboracensis (Asteraceae), another hybrid derivative of S. vulgaris L. and S. squalidus L. Watsonia 24:375–388

    Google Scholar 

  • Pykälä J, Toivonen H (1994) Taxonomy of the Carex flava complex (Cyperaceae) in Finland. Nordic J Bot 14:173–191. doi:10.1111/j.1756-1051.1994.tb00583.x

    Article  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/. Accessed Apr 2017

  • Rieseberg LH (1997) Hybrid origins of plant species. Annual Rev Ecol Syst 28:359–389. doi:10.1146/annurev.ecolsys.28.1.359

    Article  Google Scholar 

  • Rieseberg LH, Ellstrand NC, Arnold M (1993) What can molecular and morphological markers tell us about plant hybridization? Crit Rev Pl Sci 12:213–241. doi:10.1080/713608045

    CAS  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372. doi:10.1038/sj.hdy.6886170

    Article  PubMed  Google Scholar 

  • Rius M, Darling JA (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242. doi:10.1016/j.tree.2014.02.003

    Article  PubMed  Google Scholar 

  • Rosenthal DM, Schwarzbach AE, Donovan LA, Raymond O, Rieseberg LH (2002) Phenotypic differentiation between three ancient hybrid taxa and their parental species. Int J Pl Sci 163:387–398. doi:10.1086/339237

    Article  Google Scholar 

  • Salo V, Pykälä J, Toivonen H (1994) Achene epidermis in the Carex flava complex (Cyperaceae) studied by scanning electron microscopy. Ann Bot Fenn 331:45–52

    Google Scholar 

  • Santamaría L, Figuerola J, Pilon JJ, Mjelde M, Green AJ, Boer T, King RA, Gornall RJ (2003) Plant performance across latitude: the role of plasticity and local adaptation in an aquatic plant. Ecology 84:2454–2461. doi:10.1890/02-0431

    Article  Google Scholar 

  • Schmid BW (1980) Carex flava L. sl im Lichte der r-Selektion. PhD Thesis, University of Zurich, Zurich

  • Schmid BW (1981) Die Verbreitung der Artengruppe Carex flava L. s.l. in der Schweiz. Bot Helv 91:3–8

    Google Scholar 

  • Schmid BW (1982) Karyology and hydridization in the Carex flava complex in Switzerland. Feddes Repert 93:23–59. doi:10.1002/fedr.19820930103

    Article  Google Scholar 

  • Schmid BW (1983) Notes on the nomenclature and taxonomy of the Carex flava group in Europe. Watsonia 14:309–319

    Google Scholar 

  • Schmid BW (1984a) Life histories in clonal plants of the Carex flava group. J Ecol 72:93–114. doi:10.2307/2260008

    Article  Google Scholar 

  • Schmid BW (1984b) Niche width and variation within and between populations in colonizing species (Carex flava group). Oecologia 63:1–5. doi:10.1007/BF00379777

    Article  PubMed  Google Scholar 

  • Schmid BW (1986a) Colonizing plants with persistent seeds and persistent seedlings (Carex flava group). Bot Helv 96:19–26

    Google Scholar 

  • Schmid BW (1986b) Patterns of variation and population structure in the Carex flava group. Symb Bot Upsal 27:113–126

    Google Scholar 

  • Schmid BW (1992) Phenotypic variation in plants. Evol Trends Pl 6:45–60

    Google Scholar 

  • Stebbins GL (1959) The role of hybridization in evolution. Proc Amer Philos Soc 103:231–251

    Google Scholar 

  • Stoeva MP, Stepankova J (1990) Variation patterns within the Carex flava agg. in Bulgaria and Czechoslovakia. Preslia 62:1–23

    Google Scholar 

  • Toom M, Liira J, Kull T (2016) Tarnad—the genus Carex in Estonia, 1st edn. University of Tartu, Tartu

    Google Scholar 

  • Vonk DH (1979) Biosystematic studies of the Carex flava complex I. Flowering. Pl Biol 28:1–20. doi:10.1111/j.1438-8677.1979.tb01153.x

    Google Scholar 

  • Wagner WH (1969) The role and taxonomic treatment of hybrids. Bioscience 19:785–795. doi:10.2307/1294787

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution, 1st edn. Oxford University Press, New York

    Google Scholar 

  • Więcław H (2011) Morphological variability of the Carex oederi sl inflorescence. Biodivers Res Conservation 21:13–18. doi:10.2478/v10119-011-0003-0

    Google Scholar 

  • Więcław H (2014) Carex flava agg. (section Ceratocystis, Cyperaceae) in Poland: taxonomy, morphological variation, and soil conditions. Biodivers Res Conservation 33:3–51. doi:10.2478/biorc-2014-0001

    Google Scholar 

  • Więcław H, Podlasinski M (2013) Morphological differences between natural populations of Carex viridula (Cyperaceae): effects of soil conditions. Ann Bot Fenn 50:13–22. doi:10.5735/085.050.0102

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank our co-workers who helped during the field work and others for valuable comments concerning the data analysis. We thank anonymous reviewers for critical reading and constructive comments. The field work was financially supported through a DORA programme (Doctoral Studies and Internationalisation Programme) of the Archimedes Foundation and by the University of Bern.

Funding

This study was supported by the Estonian Ministry of Education and Research, institutional research funding (IUT 20-28, 20-29) and the European Union through the European Regional Development Fund (Centre of Excellence EcolChange).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisanna Schmidt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling editor: Mike Thiv.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 82 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Primary statistics (Mean and SE) of 14 morphological characters of Carex flava and C. viridula in three regions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, L., Fischer, M., Schmid, B. et al. Despite admixing two closely related Carex species differ in their regional morphological differentiation. Plant Syst Evol 303, 901–914 (2017). https://doi.org/10.1007/s00606-017-1420-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-017-1420-0

Keywords

Navigation