Skip to main content

Advertisement

Log in

Odd man out: why are there fewer plant species in African rain forests?

  • Invited Review
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Although tropical rain forests represent the most species-rich terrestrial ecosystem on the planet, the three main rain forest regions (Neotropics, South-East Asia and continental Africa) are not equally diverse. Africa has been labeled the “odd man out” because of its perceived lower species diversity when compared to the Neotropics or South-East Asia. Understanding why, within a biome, certain regions have higher or lower species diversity provides important insights into the evolution of biodiversity. I review the evidence in favor of an “odd man out” pattern and the different hypotheses that have been advanced to explain and test this pattern using recent ecological, biogeographical and diversification studies. The “odd man out” pattern has yet to be formally tested using extensive inventory plot data (including non woody species) between all three major rain forest regions based on appropriate statistics in an area controlled manner. The lower species diversity is not the result of a single cause, but is probably linked to numerous intricate causes related to present and past events. Future comparative studies should combine numerous variables including novel ones such at plant functional diversity. Finally, though more extinction in Africa is apparent from the fossil record, it is still hard to precisely quantify to what degree extinction varied between the three major regions. Diversification studies of important tropical plant lineages tend to support higher speciation rates in the Neotropics and South-East Asia instead of higher extinction in Africa as the main cause explaining the differences in species diversity. The lower species diversity of African rain forests remains an understudied question with numerous preconceived and largely untested ideas for which we are still far from having a synthetic explanation. This review highlights that there are still very little intercontinental rain forest comparisons of plant species diversity hindering any solid conclusions. To better address this, an integrative approach involving archeologists, climatologists and biologists coupled with data from all three regions should be privileged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau J-P (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    CAS  PubMed  Google Scholar 

  • Alfaro ME et al (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci USA 106:13410–13414. doi:10.1073/pnas.0811087106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Antonelli A, Sanmartín I (2011) Why are there so many plant species in the Neotropics? Taxon 60:403–414

    Google Scholar 

  • Antonelli A, Nylander JAA, Persson C, Sanmartin I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci USA 106:9749–9754. doi:10.1073/pnas.0811421106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Araújo MB, Nogués-Bravo D, Diniz-Filho JAF, Haywood AM, Valdes PJ, Rahbek C (2008) Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31:8–15

    Google Scholar 

  • Bacon CD, Michonneau F, Henderson AJ, McKenna MJ, Milroy AM, Simmons MP (2013a) Geographic and taxonomic disparities in species diversity: dispersal and diversification rates across Wallace’s line. Evolution 67:2058–2071. doi:10.1111/evo.12084

    PubMed  Google Scholar 

  • Bacon CD, Mora A, Wagner WL, Jaramillo CA (2013b) Testing geological models of evolution of the Isthmus of Panama in a phylogenetic framework. Bot J Linn Soc 171:287–300

    Google Scholar 

  • Baker TR et al. (2014) Fast demographic traits promote high diversification rates of Amazonian trees. Ecol Lett 17:527–536

  • Baker WJ, Couvreur TLP (2013a) Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. I. Historical biogeography. J Biogeogr 40:274–285

    Google Scholar 

  • Baker WJ, Couvreur TLP (2013b) Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. II. Diversification history and origin of regional assemblages. J Biogeogr 40:286–289

    Google Scholar 

  • Bardon L, Chamagne J, Dexter KG, Sothers CA, Prance GT, Chave J (2013) Origin and evolution of Chrysobalanaceae: insights into the evolution of plants in the Neotropics. Bot J Linn Soc 171:19–37

    Google Scholar 

  • Barthlott W, Mutke J, Rafiqpoor D, Kier G, Kreft H (2005) Global centers of vascular plant diversity. Nova Acta Leop 92:61–83

    Google Scholar 

  • Bartish IV, Antonelli A, Richardson JE, Swenson U (2011) Vicariance or long-distance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae). J Biogeogr 38:177–190. doi:10.1111/j.1365-2699.2010.02389.x

    Google Scholar 

  • Bjorholm S, Svenning JC, Skov F, Balslev H (2005) Environmental and spatial controls of palm (Arecaceae) species richness across the Americas. Global Ecol Biogeogr 14:423–429. doi:10.1111/j.1466-822x.2005.00167.x

    Google Scholar 

  • Blach-Overgaard A, Kissling WD, Dransfield J, Balslev H, Svenning J-C (2013) Multimillion-year climatic effects on palm species diversity in Africa. Ecology 94:2426–2435. doi:10.1890/12-1577.1

    PubMed  Google Scholar 

  • Buerki S, Forest F, Stadler T, Alvarez N (2013) The abrupt climate change at the Eocene-Oligocene boundary and the emergence of South-East Asia triggered the spread of sapindaceous lineages. Ann Bot (Oxford) 112:151–160

    Google Scholar 

  • Chanderbali AS, van der Werff H, Renner SS (2001) Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann Missouri Bot Gard 88:104–134

    Google Scholar 

  • Christenhusz MJM, Chase MW (2013) Biogeographical patterns of plants in the Neotropics—dispersal rather than plate tectonics is most explanatory. Bot J Linn Soc 171:277–286. doi:10.1111/j.1095-8339.2012.01301.x

    Google Scholar 

  • Cody S, Richardson JE, Rull V, Ellis C, Pennington RT (2010) The Great American biotic interchange revisited. Ecography 33:326–332. doi:10.1111/j.1600-0587.2010.06327.x

    Google Scholar 

  • Connor EF, McCoy ED (1979) The statistics and biology of the species–area relationship. Amer Naturalist 113:791–833. doi:10.2307/2460305

    Google Scholar 

  • Cornell HV (2013) Is regional species diversity bounded or unbounded? Biol Rev 88:140–165

    PubMed  Google Scholar 

  • Couvreur TLP, Baker WJ (2013) Tropical rain forest evolution: palms as a model group. BMC Biol 11:48

    PubMed Central  PubMed  Google Scholar 

  • Couvreur TLP, Chatrou LW, Sosef MSM, Richardson JE (2008) Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees. BMC Biol 6:54

    PubMed Central  PubMed  Google Scholar 

  • Couvreur TLP, Forest F, Baker WJ (2011a) Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biol 9:44

    PubMed Central  PubMed  Google Scholar 

  • Couvreur TLP, Pirie MD, Chatrou LW, Saunders RMK, Su YCF, Richardson JE, Erkens RHJ (2011b) Early evolutionary history of the flowering plant family Annonaceae: steady diversification and boreotropical geodispersal. J Biogeogr 38:664–680. doi:10.1111/j.1365-2699.2010.02434.x

    Google Scholar 

  • Couvreur TLP, Porter-Morgan H, Wieringa JJ, Chatrou LW (2011c) Little ecological divergence associated with speciation in two African rain forest tree genera. BMC Evol Biol 11:296

    PubMed Central  PubMed  Google Scholar 

  • Davies TJ, Savolainen V, Chase MW, Moat J, Barraclough TG (2004) Environmental energy and evolutionary rates in flowering plants. Proc Roy Soc London Ser B Biol Sci 271:2195–2200

    Google Scholar 

  • Davis CC, Bell CD, Mathews S, Donoghue MJ (2002) Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. Proc Natl Acad Sci USA 99:6833–6837. doi:10.1073/pnas.102175899

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ (2005) Explosive radiation of malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. Amer Naturalist 165:E36–E65

    Google Scholar 

  • De Cáceres M et al (2012) The variation of tree beta diversity across a global network of forest plots. Global Ecol Biogeogr 21:1191–1202

    Google Scholar 

  • Díaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Google Scholar 

  • Dick CW, Abdul-Salim K, Bermingham E (2003) Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree. Amer Naturalist 162:691–703

    Google Scholar 

  • Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008) Genera Palmarum: the evolution and classification of palms. Kew Publishing, Kew

    Google Scholar 

  • Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci USA 97:9115–9120

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erkens RHJ, Chatrou LW, Maas JW, van der Niet T, Savolainen V (2007) A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America. Molec Phylogen Evol 44:399–411

    CAS  Google Scholar 

  • Erkens RHJ, Maas JW, Couvreur TLP (2009) From Africa via Europe to South America: migrational route of a species-rich genus of Neotropical lowland rain forest trees (Guatteria, Annonaceae). J Biogeogr 36:2338–2352

    Google Scholar 

  • Erkens RHJ, Chatrou LW, Couvreur TLP (2012) Radiations and key innovations in an early branching angiosperm lineage (Annonaceae; Magnoliales). Bot J Linn Soc 169:117–134. doi:10.1111/j.1095-8339.2012.01223.x

    Google Scholar 

  • Evans KL, Warren PH, Gaston KJ (2005) Species–energy relationships at the macroecological scale: a review of the mechanisms. Biol Rev 80:1–25

    PubMed  Google Scholar 

  • FAO (2001) The state of the world’s forests. Rome, Italy Food and Agriculture Organization of the United Nations, p 181

  • Fine PV, Ree RH (2006) Evidence for a time-integrated species–area effect on the latitudinal gradient in tree diversity. Amer Naturalist 168:796–804

    Google Scholar 

  • Fjeldså J, Lovett JC (1997) Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centers. Biodivers Conserv 6(325):346

    Google Scholar 

  • Francis AP, Currie DJ (2003) A globally consistent richness–climate relationship for angiosperms. Amer Naturalist 161:523–536

    Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    CAS  PubMed  Google Scholar 

  • Gentry A (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann Missouri Bot Gard 69:557–593

    Google Scholar 

  • Gentry A (1992) Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63:19–28

    Google Scholar 

  • Gentry A (1993) Diversity and floristic composition of lowland tropical forest in Africa and South America. In: Goldblatt P (ed) Biological relationships between Africa and South America. Yale University Press, New Haven, pp 500–547

    Google Scholar 

  • Gentry AH, Dodson C (1987) Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19:149–156

    Google Scholar 

  • Givnish TJ, Renner SS (2004) Tropical intercontinental disjunctions: Gondwana breakup, immigration from the boreotropics, and transoceanic dispersal. Int J Pl Sci 165:S1–S6

    Google Scholar 

  • Gonmadje CF, Doumenge C, Sunderland TCH, Balinga MPB, Sonk Bonaventure (2012) Analyse phytogeographique des forets d’Afrique Centrale: le cas du massif de Ngovayang (Cameroun). Pl Ecol Evol 145:152–164. doi:10.5091/plecevo.2012.573

    Google Scholar 

  • Guillaumet J-L, Chevillotte H, Valton C (2009) Carte des forêts tropicales humides africaines au 1: 6 000 000. IRD, Bondy

    Google Scholar 

  • Hall R (2009) Southeast Asia’s changing palaeogeography. Blumea 54:148–161. doi:10.3767/000651909x475941

    Google Scholar 

  • Hamon N, Sepulchre P, Lefebvre V, Ramstein G (2013) The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma). Clim Past 9

  • Haywood AM, Dowsett HJ, Valdes PJ, Lunt DJ, Francis JE, Sellwood BW (2009) Introduction. Pliocene climate, processes and problems. Philos Trans Ser A 367:3–17

    Google Scholar 

  • Heckenberger MJ, Kuikuro A, Kuikuro UT, Russell JC, Schmidt M, Fausto C, Franchetto B (2003) Amazonia 1492: Pristine Forest or Cultural Parkland? Science 301:1710–1714. doi:10.1126/science.1086112

    CAS  PubMed  Google Scholar 

  • Hickerson MJ et al (2010) Phylogeography’s past, present, and future: 10 years after Avise, 2000. Molec Phylogen Evol 54:291–301. doi:10.1016/j.ympev.2009.09.016

    CAS  Google Scholar 

  • Hoorn C et al (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931. doi:10.1126/science.1194585

    CAS  PubMed  Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA 103:10334–10339

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass-dominated ecosystems. Ann Missouri Bot Gard 86:590–643

    Google Scholar 

  • Janssens SB, Knox EB, Huysmans S, Smets EF, Merckx V (2009) Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change. Molec Phylogen Evol 52:806–824. doi:10.1016/j.ympev.2009.04.013

    CAS  Google Scholar 

  • Jansson R (2003) Global patterns in endemism explained by past climatic change. Proc Roy Soc London Ser B Biol Sci 270:583–590

    Google Scholar 

  • Jansson R, Davies TJ (2008) Global variation in diversification rates of flowering plants: energy vs. climate change. Ecol Lett 11:173–183

    PubMed  Google Scholar 

  • Jansson R, Dynesius M (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annual Rev Ecol Syst 33:741–777

    Google Scholar 

  • Jaramillo C, Rueda MJ, Mora G (2006) Cenozoic plant diversity in the neotropics. Science 311:1893–1896. doi:10.1126/science.1121380

    CAS  PubMed  Google Scholar 

  • Jaramillo C et al (2010) The origin of the modern Amazon rainforest: implications from the palynological and paleobotanical record. In: Hoorn MC, Wesselingh FP (eds) Amazonia, landscape and species evolution. Blackwell, Oxford, pp 317–334

    Google Scholar 

  • Jetz W, Fine PV (2012) Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol 10:e1001292

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kenfack D, Thomas DW, Chuyong G, Condit R (2007) Rarity and abundance in a diverse African forest. Biodivers Conserv 16:2045–2074

    Google Scholar 

  • Kisel Y, McInnes L, Toomey NH, Orme CDL (2011) How diversification rates and diversity limits combine to create large-scale species–area relationships. Philos Trans Ser B 366:2514–2525

    Google Scholar 

  • Kissling WD, Eiserhardt WL, Baker WJ, Borchsenius F, Couvreur TLP, Balslev H, Svenning J-C (2012) Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc Natl Acad Sci USA 109:7379–7384. doi:10.1073/pnas.1120467109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klopper RR, Gautier L, Chatelain C, Smith GF, Spichiger R (2007) Floristics of the angiosperm flora of Sub-Saharan Africa: an analysis of the African Plant Checklist and Database. Taxon 56:201–208

    Google Scholar 

  • Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104:5925–5930

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kreft H, Sommer JH, Barthlott W (2006) The significance of geographic range size for spatial diversity patterns in Neotropical palms. Ecography 29:21–30

    Google Scholar 

  • Kress JW, Specht CD (2006) The evolutionary and biogeographic origin of the tropical monocot order Zingiberales. Aliso 22:619–630

    Google Scholar 

  • Küper W, Sommer JH, Lovett JC, Barthlott W (2006) Deficiency in African plant distribution data—missing pieces of the puzzle. Bot J Linn Soc 150:355–368. doi:10.1111/j.1095-8339.2006.00494.x

    Google Scholar 

  • Lavin M, Thulin M, Labat J-N, Pennington RT (2000) Africa, the odd man out: molecular biogeography of dalbergioid legumes (Fabaceae) suggests otherwise. Syst Bot 25:449–467

    Google Scholar 

  • Linder HP (2001) Plant diversity and endemism in sub-Saharan tropical Africa. J Biogeogr 28:169–182

    Google Scholar 

  • Linder HP, de Klerk HM, Born J, Burgess ND, Fjeldså J, Rahbek C (2012) The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. J Biogeogr 39:1189–1205

    Google Scholar 

  • Lohman DJ et al (2011) Biogeography of the Indo-Australian archipelago. Annual Rev Ecol Evol Sys 42:205–226

    Google Scholar 

  • Losos JB, Schluter D (2000) Analysis of an evolutionary species–area relationship. Nature 408:847–850

    CAS  PubMed  Google Scholar 

  • Lovett JC, Marchant R, Marshall AR, Barber J (2007) Tropical Moist Forests. In: Hester RE, Harrison RM (eds) Biodiversity under threat, vol 25. Royal Society of Chemistry, Cambridge, pp 161–192

    Google Scholar 

  • Maas PJM, Westra LYTh, Chatrou LW et al (2003) Duguetia (Annonaceae). Flora Neotropica, Monograph 88:1–274

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos Trans Ser B 359:311–329

    Google Scholar 

  • Manns U, Wikström N, Taylor CM, Bremer B (2012) Historical biogeography of the predominantly neotropical subfamily Cinchonoideae (Rubiaceae): into or out of America? Int J Pl Sci 173:261–286

    Google Scholar 

  • Massoni J (2014) Phylogeny, molecular dating, and floral evolution of Magnoliidae (Angiospermae). Université Paris Sud

  • Mayaux P et al (2013) State and evolution of the African rainforests between 1990 and 2010. Philos Trans Ser B 368. doi:10.1098/rstb.2012.0300

  • McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:548–557. doi:10.1016/j.tree.2007.09.003

    PubMed  Google Scholar 

  • McGlone MS (1996) When history matters: scale, time, climate and tree diversity. Global Ecol Biogeogr Lett 5:309–314

    Google Scholar 

  • McMichael CH, Piperno DR, Bush MB, Silman MR, Zimmerman AR, Raczka MF, Lobato LC (2012) Sparse Pre-Columbian Human Habitation in Western Amazonia. Science 336:1429–1431. doi:10.1126/science.1219982

    CAS  PubMed  Google Scholar 

  • McPeek MA, Brown JM (2007) Clade age and not diversification rate explains species richness among animal taxa. Amer Naturalist 169:E97–E106

    Google Scholar 

  • Mittelbach GG et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331. doi:10.1111/j.1461-0248.2007.01020.x

    PubMed  Google Scholar 

  • Moore HEJ (1973) Palms in the tropical forest ecosystems of Africa and South America. Smithsonian Institution Press, Washington

    Google Scholar 

  • Morley RJ (1998) Palynological evidence for Tertiary plant dispersals in the SE Asian region in relation to plate tectonics and climate. In: Hall R, Holloway JD (eds) Biogeography and geological evolution of SE Asia. Backhuys Publishers, Leiden, pp 211–234

    Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rain forests. Wiley, New York

    Google Scholar 

  • Morley RJ (2007) Cretaceous and tertiary climate change and the past distribution of megathermal rainforests. In: Bush MB, Flenley J (eds) Tropical rainforest responses to climatic changes. Praxis Publishing, Chichester, pp 1–31

    Google Scholar 

  • Morley RJ (2012) A review of the Cenozoic paleoclimatic history of Southeast Asia. In: Gower D, Johnson KG, Richardson JE, Rosen B, Rüber L, Williams ST (eds) Biotic evolution and environmental change in Southeast Asia, vol 82., Cambridge University PressCambridge, UK, pp 79–114

    Google Scholar 

  • Morley R, Dick C (2003) Missing fossils, molecular clocks, and the origin of the Melastomataceae. Amer J Bot 90:1638–1644

    Google Scholar 

  • Morlon H (2014) Phylogenetic approaches for studying diversification. Ecol Lett 17:508–525

    PubMed  Google Scholar 

  • Morlon H, Parsons TL, Plotkin JB (2011) Reconciling molecular phylogenies with the fossil record. Proc Natl Acad Sci USA 108:16327–16332

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muellner AN, Savolainen V, Samuel R, Chase MW (2006) The mahogany family “out-of-Africa”: divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. Molec Phylogen Evol 40:236–250

    CAS  Google Scholar 

  • Mutke J, Barthlott W (2005) Patterns of vascular plant diversity at continental to global scales. Biol Skr 55:521–531

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  PubMed  Google Scholar 

  • Nauheimer L, Boyce PC, Renner SS (2012) Giant taro and its relatives: a phylogeny of the large genus Alocasia (Araceae) sheds light on Miocene floristic exchange in the Malesian region. Molec Phylogen Evol 63:43–51

    Google Scholar 

  • Olson DM et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938. doi:10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2

  • Pan AD, Jacobs BF, Dransfield J, Baker WJ (2005) The fossil history of palms (Arecaceae) in Africa and new records from the Late Oligocene (28–27 Mya) of north-western Ethiopia. Bot J Linn Soc 151:69–81

    Google Scholar 

  • Parmentier I et al (2007) The odd man out? Might climate explain the lower tree alpha-diversity of African rain forests relative to Amazonian rain forests? J Ecol 95:1058–1071

    Google Scholar 

  • Pennington RT, Dick CW (2004) The role of immigrants in the assembly of the South American rainforest tree flora. Philos Trans Ser B 359:1611–1622

    Google Scholar 

  • Plana V (2004) Mechanisms and tempo of evolution in the African Guineo-Congolian rainforest. Philos Trans Ser B 359:1585–1594

    Google Scholar 

  • Plana V, Gascoigne A, Forrest LL, Harris D, Pennington RT (2004) Pleistocene and pre-Pleistocene Begonia speciation in Africa. Molec Phylogen Evol 31:449–461

    Google Scholar 

  • Pross J et al (2012) Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488:73–77

    CAS  PubMed  Google Scholar 

  • Qian H, Ricklefs RE (2004) Taxon richness and climate in angiosperms: is there a globally consistent relationship that precludes region effects? Amer Naturalist 163:773–779

    Google Scholar 

  • Rabosky DL (2010) Extinction rates should not be estimated from molecular phylogenies. Evolution 64:1816–1824. doi:10.1111/j.1558-5646.2009.00926.x

    PubMed  Google Scholar 

  • Rabosky DL, Slater GJ, Alfaro ME (2012) Clade age and species richness are decoupled across the eukaryotic tree of life. PLoS Biol 10:e1001381. doi:10.1371/journal.pbio.1001381

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rabosky DL, Santini F, Eastman J, Smith SA, Sidlauskas B, Chang J, Alfaro ME (2013) Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature communications 4

  • Rakotoarinivo M, Blach-Overgaard A, Baker WJ, Dransfield J, Moat J, Svenning J-C (2013) Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot. Proc R Soc B-Biol Sci 280:20123048

    Google Scholar 

  • Rapini A, van den Berg C, Liede-Schumann S (2007) Diversifcation of Asclepiadoideae (Apocynaceae) in the New World. Ann Missouri Bot Gard 94:407–422. doi:10.3417/0026-6493(2007)94[407:doaait]2.0.co;2

  • Raven HP, Axelrod DI (1974) Angiosperm biodiversity and past continental movements. Ann Missouri Bot Gard 61:539–673

    Google Scholar 

  • Renner SS (2005) Relaxed molecular clocks for dating historical plant dispersal events. Trends Plant Sci 10:550–558

    CAS  PubMed  Google Scholar 

  • Renner SS, Clausing G, Meyer K (2001) Historical biogeography of Melastomataceae: the roles of Tertiary migration and long-distance dispersal. Amer J Bot 88:1290–1300

    CAS  Google Scholar 

  • Richards PW (1973) Africa, the ‘Odd man out’. In: Meggers BJ, Ayensu ES, Duckworth WD (eds) Tropical forest ecosystems of Africa and South America: a comparative review. Smithsonian Institution Press, Washintong DC

    Google Scholar 

  • Richards PW (1996) The tropical rain forest: an ecological study, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Richardson JE, Costion C, Muellner AN (2012) The Malasian floristic interchange: plant migration patterns across Wallace’s line. In: Gower D, Johnson KG, Richardson JE, Rosen B, Rüber L, Williams ST (eds) Biotic evolution and environmental change in Southeast Asia, vol 82. Cambridge University Press, Cambridge, pp 138–163

    Google Scholar 

  • Richardson JE et al (2014) The influence of tectonics, sea-level changes and dispersal on migration and diversification of Isonandreae (Sapotaceae). Bot J Linn Soc 174:130–140. doi:10.1111/boj.12108

    Google Scholar 

  • Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171

    CAS  PubMed  Google Scholar 

  • Ricklefs RE, Renner SS (2012) Global correlations in tropical tree species richness and abundance reject neutrality. Science 335:464–467

    CAS  PubMed  Google Scholar 

  • Rolland J, Condamine FL, Jiguet F, Morlon H (2014) Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol 12:e1001775. doi:10.1371/journal.pbio.1001775

    PubMed Central  PubMed  Google Scholar 

  • Roy MS (1997) Recent diversification in African greenbuls (Pycnonotidae: Andropadus) supports a montane speciation model. Proc Roy Soc London Ser B Biol Sci 264:1337–1344

    Google Scholar 

  • Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning J-C (2011) The influence of late quaternary climate-change velocity on species endemism. Science 334:660–664. doi:10.1126/science.1210173

    CAS  PubMed  Google Scholar 

  • Sauquet H, Weston PH, Anderson CL, Barker NP, Cantrill DJ, Mast AR, Savolainen V (2009) Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proc Natl Acad Sci USA 106:221–225. doi:10.1073/pnas.0805607106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stadler T (2013) Recovering speciation and extinction dynamics based on phylogenies. J Evol Biol 26:1203–1219

    CAS  PubMed  Google Scholar 

  • Stebbins GL (1974) Flowering plants: evolution above the species level. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Stephens PR, Wiens JJ (2003) Explaining species richness from continents to communities: the time-for-speciation effect in emydid turtles. Amer Naturalist 161:112–128. doi:10.1086/345091

    Google Scholar 

  • Stropp J, Ter Steege H, Malhi Y (2009) Disentangling regional and local tree diversity in the Amazon. Ecography 32:46–54

    Google Scholar 

  • Su Y, Saunders R (2009) Evolutionary divergence times in the Annonaceae: evidence of a Late Miocene origin of Pseuduvaria in Sundaland with subsequent diversification in New Guinea. BMC Evol Biol 9:153

    PubMed Central  PubMed  Google Scholar 

  • Swenson NG (2013) The assembly of tropical tree communities—the advances and shortcomings of phylogenetic and functional trait analyses. Ecography 36:264–276. doi:10.1111/j.1600-0587.2012.00121.x

    Google Scholar 

  • ter Steege H et al (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    PubMed  Google Scholar 

  • ter Steege H et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:6156. doi:10.1126/science.1243092

    Google Scholar 

  • Thomas WW (1999) Conservation and monographic research on the flora of Tropical America. Biodivers Conserv 8:1007–1015. doi:10.1023/a:1008857429787

    Google Scholar 

  • Thomas D et al (2012) West to east dispersal and subsequent rapid diversification of the mega diverse genus Begonia (Begoniaceae) in the Malesian archipelago. J Biogeogr 39:98–113

    Google Scholar 

  • Thorne RF (1973) Floristic relationships between tropical Africa and tropical America. In: Meggers B, Ayensu E, Duckworth W (eds) Tropical forest ecosystems in Africa and South America: a comparative review. Smithsonian Instn Press, Washington, pp 27–47

    Google Scholar 

  • Tolley KA, Townsend TM, Vences M (2013) Large-scale phylogeny of chameleons suggests African origins and Eocene diversification. Proc Roy Soc London Ser B Biol Sci 280:20130184

    Google Scholar 

  • van Gemerden BS, Olff H, Parren MP, Bongers F (2003) The pristine rain forest? Remnants of historical human impacts on current tree species composition and diversity. J Biogeogr 30:1381–1390

    Google Scholar 

  • van Steenis CGGJ (1962) The land bridge theory in botany. Blumea 11:235–542

    Google Scholar 

  • Vences M, Wollenberg KC, Vieites DR, Lees DC (2009) Madagascar as a model region of species diversification. Trends Ecol Evol 24:456–465

    PubMed  Google Scholar 

  • Wallace A (1876) The geographic distribution of animals. Hafner, New York

    Google Scholar 

  • Wallace AR (1878) Tropical nature, and other essays. Macmillian, London

    Google Scholar 

  • Wang W et al (2012) Menispermaceae and the diversification of tropical rainforests near the Cretaceous-Paleogene boundary. New Phytol 195:470–478. doi:10.1111/j.1469-8137.2012.04158.x

    PubMed  Google Scholar 

  • Wasser SK, Lovett JC (1993) Biogeography and ecology of the rainforests of Eastern Africa. Cambridge University Press, Cambridge

    Google Scholar 

  • Whitmore TC (1998) An introduction to tropical rain forests. Clarendon Press, Oxford

    Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Google Scholar 

  • Wiens JJ (2011) The causes of species richness patterns across space, time, and clades and the role of “ecological limits”. Quart Rev Biol 86:75–96

    PubMed  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    CAS  PubMed  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    CAS  PubMed  Google Scholar 

  • Zerega NJC, Clement WL, Datwyler SL, Weiblen GD (2005) Biogeography and divergence times in the mulberry family (Moraceae). Molec Phylogen Evol 37:402–416. doi:10.1016/j.ympev.2005.07.004

    Google Scholar 

  • Zhou L, Su YCF, Thomas DC, Saunders RMK (2012) ‘Out-of-Africa’ dispersal of tropical floras during the Miocene climatic optimum: evidence from Uvaria (Annonaceae). J Biogeogr 39:322–335. doi:10.1111/j.1365-2699.2011.02598.x

    Google Scholar 

Download references

Acknowledgments

I wish to thank Pete Lowry and Sylvain Razafimandimbison for inviting me to give a talk at the AETFAT 2014 conference in Stellenbosch South Africa where the ideas for this article were crystallized. I also thank Bill Baker for critically reading a previous version of this review. Hans ter Steege is also thanked for his comments in an earlier version. I thank Fabien Condamine, associate editor Hervé Sauquet and an anonymous reviewer for their excellent comments. Finally, I am grateful to Vincent Deblauwe for generating the maps in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. P. Couvreur.

Additional information

Handling editor: Hervé Sauquet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couvreur, T.L.P. Odd man out: why are there fewer plant species in African rain forests?. Plant Syst Evol 301, 1299–1313 (2015). https://doi.org/10.1007/s00606-014-1180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1180-z

Keywords

Navigation