Skip to main content
Log in

Functional dioecy in Morinda parvifolia (Rubiaceae), a species with stigma-height dimorphism

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The evolution of dioecy from heterostyly has been well documented, but detailed studies on this transitional process are rare. Here we report the occurrence of cryptic dioecy in a perennial liana species with stigma-height dimorphism, Morinda parvifolia Bartl. ex DC. (Rubiaceae). Floral morphology, ancillary characters and cross compatibility of long-styled (L-morph) and short-styled (S-morph) were examined. L-morph and S-morph display obvious pistil dimorphisms, with the stigma of S-morph lacking papillae cells. Both floral morphs show similar pollen morphology, although pollen viability is higher in S-morph than in L-morph. S-morph flowers produce viable pollen grains but much reduced stigma and set no fruits, functioning as males; L-morphs, although with viable pollen grains and receptive stigmas, exhibit strong self- and intramorph incompatibility, with self- and intramorph pollen tubes arrested in the stigma lobes and the upper part of style, respectively, resulting in L-morphs functioning only as females. The species thus has physiological androdioecy but functional dioecy. This might be the first case showing the possibility that androdioecy could be a mid-stage in the pathway of dioecy evolving from stigma-height dimorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bahadur B (1968) Heterostyly in Rubiaceae: a review. J Osman Univ (Sci) Golden Jubilee Volume: 207–238

  • Bahadur B (1970) Heterostyly in Hedyotis nigricans (Lam.) Fosb. J Genet 60(2):175–177

    Article  Google Scholar 

  • Baker HG (1958) Studies in reproductive biology of West African Rubiaceae. J West Afric Sci Assoc 4:4–24

    Google Scholar 

  • Baker CA, Bakhiuzen RCVDB (1965) Angiospermae. In: Flora of Java, vol 2. Noordhoff NVP, Netherlands

  • Baker AM, Thompson JD, Barrett SCH (2000) Evolution and maintenance of stigma-height dimorphism in Narcissus. I Floral variation and style-morph ratios. Heredity 84:502–513

    Article  PubMed  Google Scholar 

  • Barrett SCH, Shore JS (2008) New Insights on Heterostyly: Comparative Biology, Ecology and Genetics. In: Franklin-Tong VE (ed) Self-incompatibility in flowering plants—evolution, diversity, and mechanisms. Springer, Berlin, pp 3–32

    Chapter  Google Scholar 

  • Bawa KS (1980) Evolution of dioecy in flowering plants. Annu Rev Ecol Syst 11:15–39

    Article  Google Scholar 

  • Beach JH, Bawa KS (1980) Role of pollinators in the evolution of dioecy from distyly. Evolution 34(6):1138–1142

    Article  Google Scholar 

  • Bentham G, Hooker JD (1876) Genera Plantarum, vol 2. London

  • Bremekamp CEB (1966) Remarks on the position, the delimitation and the subdivision of the Rubiaceae. Acta Bot Neerlandica 15:1–33

    Google Scholar 

  • Bremer B, Manen JF (2000) Phylogeny and classification of the subfamily Rubioideae (Rubiaceae). Plant Syst Evol 225:43–72

    Article  CAS  Google Scholar 

  • Bremer B, Andreasen K, Olsson D (1995) Subfamilial and tribal relationships in the Rubiaceae based on rbcL sequence data. Ann Missouri Bot Gard 82:383–397

    Article  Google Scholar 

  • Bremer B, Jansen RK, Oxelman B, Backlund M, Lantz H, Kim K-J (1999) More characters or more taxa for a robust phylogeny—case study from the coffee family (Rubiaceae). Syst Biol 48(3):413–435

    Article  PubMed  CAS  Google Scholar 

  • Burck MW (1883) Sur 1’organisation florale chez quelques Rubiacees. Ann Jard Bot Buitenz 3:105–119

    Google Scholar 

  • Castro CC, Oliveira PEAM, Alves MC (2004) Breeding system and floral morphometry of distylous Psychotria L. species in the Atlantic rain forest, SE Brazil. Plant Biol 6:755–760

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D (1984) Androdioecy and the evolution of dioecy. Biol J Linn Soc 23:333–348

    Article  Google Scholar 

  • Charlesworth D (1999) Theories of the evolution of dioecy. In: Geber MA, Dawson TE, Delph LE (eds) Gender and sexual dimorphism in flowering plants. Springer, New York, pp 33–60

    Google Scholar 

  • Charlesworth B, Charlesworth D (1978a) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1978b) Population-genetics of partial male-sterility and evolution of monoecy and dioecy. Heredity 41:137–153

    Article  Google Scholar 

  • Dafni A (1992) Pollination ecology: a practical approach. Oxford University Press, New York

    Google Scholar 

  • Darwin CR (1877) The different forms of flowers and plants of the same species. John Murray, London

    Book  Google Scholar 

  • Dommée B, Bompar JL, Denelle N (1990) Sexual tetramorphism in Thymelaea hirsuta (Thymelaeaceae): evidence of the pathway from heterodichogamy to dioecy at the infraspecific level. Am J Bot 77:1449–1462

    Article  Google Scholar 

  • Dorken ME, Friedman J, Barrett SCH (2002) The evolution and maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae). Evolution 56:31–41

    PubMed  Google Scholar 

  • Dulberger R (1992) Floral polymorphisms and their functional significance in the heterostylous syndrome. In: Barrett SCH (ed) Evolution and function of heterostyly. Springer, Berlin, pp 41–77

    Google Scholar 

  • East EM (1940) The distribution of self sterility in flowering plants. Proc Am Phil Soc 82:449–518

    Google Scholar 

  • Eckert CG, Barrett SCH (1994) Tristyly, self-compatibility and floral variation in Decodon verticillatus (Lythraceae). Biol J Linn Soc 53:1–30

    Article  Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy: angiosperms. Almqvist and Wiksell Press, Stockholm

    Google Scholar 

  • Faegri K, Iversen J (1964) Textbook of pollen analysis. Munksgaard Press, Copenhagen

    Google Scholar 

  • Faivre AE, Mcdade LA (2001) Population-level variation in the expression of heterostyly in three species of Rubiaceae: does reciprocal placement of anthers and stigmas characterize heterostyly? Am J Bot 88(5):841–853

    Article  PubMed  CAS  Google Scholar 

  • Ferrero V, Arroyo J, Vargas P, Thompson JD, Navarro L (2009) Evolutionary transitions of style polymorphisms in Lithodora (Boraginaceae). Persp Plant Eco Evol Syst 11:111–125

    Article  Google Scholar 

  • Ganders FR (1979) The biology of heterostyly. New Zeal J Bot 17:607–635

    Article  Google Scholar 

  • Gleiser G, Verdú M (2005) Repeated evolution of dioecy from androdioecy in Acer. New Phytol 165:633–640

    Article  PubMed  Google Scholar 

  • Johansson JT (1994) The genus Morinda (Morindeae, Rubioideae, Rubiaceae) in New Caledonia: taxonomy and phytogeny. Opera Bot 122:1–67

    Google Scholar 

  • Lepart J, Dommée B (1992) Is Phillyrea angustifolia L. (Oleaceae) an androdioecious species? Bot J Linn Soc 108:375–387

    Article  Google Scholar 

  • Li AM, Wu XQ, Zhang DX, Barrett SCH (2010) Cryptic dioecy in Mussaenda pubescens (Rubiaceae): a species with stigma-height dimorphism. Ann Bot 106(4):521–531

    Article  PubMed  Google Scholar 

  • Liston A, Rieseberg LH, Elias TS (1990) Functional androdioecy in the flowering plant Datisca glomerata. Nature 343:641–642

    Article  Google Scholar 

  • Liu Y (2010) Taxonomic revision of Morinda in China. Ph. D Dissertation, The Chinese Academy of Sciences, China

  • Lloyd DG (1974) The genetic contributions of individual males and females in dioecious and gynodioecious angiosperms. Heredity 32:45–51

    Article  Google Scholar 

  • Lloyd DG (1975) The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45:325–339

    Article  Google Scholar 

  • Lloyd DG (1979) Evolution towards dioecy in heterostylous populations. Plant Syst Evol 131:71–80

    Article  Google Scholar 

  • Lloyd DG (1980) The distributions of gender in four angiosperm species illustrating two evolutionary pathways to dioecy. Evolution 34:123–134

    Article  Google Scholar 

  • Lloyd DG, Webb CJ (1992a) The evolution of heterostyly. In: Barrett SCH (ed) Evolution and function of heterostyly. Springer, Berlin, pp 151–178

    Google Scholar 

  • Lloyd DG, Webb CJ (1992b) The selection of heterostyly. In: Barrett SCH (ed) Evolution and function of heterostyly. Springer, Berlin, pp 179–207

    Google Scholar 

  • Luo SX, Zhang DX, Renner SS (2007) Duodichogamy and androdioecy in the Chinese Phyllanthaceae Bridelia tomentosa. Am J Bot 94(2):260–265

    Article  PubMed  Google Scholar 

  • Lush WM, Clarke AE (1997) Observations of pollen tube growth in Nicotiana alata and their implications for the mechanism of self-incompatibility. Sex Plant Reprod 10:27–35

    Article  Google Scholar 

  • Massinga PH, Johnson SD, Harder LD (2005) Heteromorphic incompatibility and efficiency of pollination in two distylous Pentanisia species (Rubiaceae). Ann Bot 95:389–399

    Article  PubMed  Google Scholar 

  • Mayer SS, Charlesworth D (1991) Cryptic dioecy in flowering plants. Trends Ecol Evol 6:320–325

    Article  PubMed  CAS  Google Scholar 

  • Murfett J, Atherton TL, Mou BQ, Gassert CS, Mcclure BA (1994) S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367:563–566

    Article  PubMed  CAS  Google Scholar 

  • Naiki A, Kato M (1999) Pollination system and evolution of dioecy from distyly in Mussaenda parviflora (Rubiaceae). Plant Spec Biol 14:217–227

    Article  Google Scholar 

  • Naiki A, Nagamasu H (2003) Distyly and pollen dimorphism in Damnacanthus (Rubiaceae). J Plant Res 116:105–113

    PubMed  Google Scholar 

  • Pannell JR (2002) The evolution and maintainance of androdioecy. Annu Rev Ecol Syst 33:397–425

    Article  Google Scholar 

  • Pendleton RL, Freeman C, McArthur ED, Sanderson SC (2000) Gender specialization in heterodichogamous Grayia brandegei (Chenopodiaceae): evidence for an alternative pathway to dioecy. Am J Bot 87:508–516

    Article  PubMed  CAS  Google Scholar 

  • Pérez R, Vargas P, Arroyo J (2003) Convergent evolution of flower polymorphism in Narcissus (Amaryllidaceae). New Phytol 161:235–252

    Article  Google Scholar 

  • Philip O, Mathew PM (1978) Heterostyly and pollen dimorphism in Morinda tinctoria Roxb. New Bot 5:47–51

    Google Scholar 

  • Razafimandimbison SG, Rydina C, Bremer B (2008) Evolution and trends in the Psychotrieae alliance (Rubiaceae)—a rarely reported evolutionary change of many-seeded carpels from one-seeded carpels. Mol Phylogenet Evol 48:207–223

    Article  PubMed  CAS  Google Scholar 

  • Razafimandimbison SG, McDowell TD, Halford DA, Bremer B (2009) Molecular phylogenetics and generic assessment in the tribe Morindeae (Rubiaceae–Rubioideae): how to circumscribe Morinda L. to be monophyletic? Mol Phylogenet Evol 52:879–886

    Article  PubMed  CAS  Google Scholar 

  • Reddy NP, Bahadur B (1978) Heterostyly in Morinda tomentosa Roxb. (Rubiaceae). Acta Bot Indica 6:63–70

    Google Scholar 

  • Renner S, Won H (2001) Repeated evolution of dioecy from monoecy in Siparunaceae (Laurales). Syst Biol 50:700–712

    Article  PubMed  CAS  Google Scholar 

  • Riveros GM, Barría OR, Humaña PAM (1995) Self-compatibility in distylous Hedyotis salzmannii (Rubiaceae). Pl Syst Evol 194:1–8

    Article  Google Scholar 

  • Robbrecht E (1988) Tropical woody Rubiaceae. Characteristic features and progressions. Contributions to a new subfamilial classification. Opera Bot Belg 1:1–271

    Google Scholar 

  • Robbrecht E, Manen JF (2006) The major evolutionary lineages of the coffee family (Rubiaceae, angiosperms). Combined analysis (nDNA and cpDNA) to infer the position of Coptosapelta and Luculia, and supertree construction based on rbcL, rps16, trnL-trnF and atpB-rbcL data. A new classification in two subfamilies Cinchonoideae and Rubioideae. Syst Geog Pl 76:85–145

    Google Scholar 

  • Rodriguez-Riaño T, Dafni A (2000) A new procedure to assess pollen viability. Sex Plant Reprod 12:241–244

    Article  Google Scholar 

  • Ruan YZ (1999) Morinda L. In: Chen WQ, Lo HS, Ko WC, Ruan YZ (eds) Flora reipublicae popularis sinicae, vol 71., 2Science Press, Beijing, pp 179–202

    Google Scholar 

  • Sakai S (2001) Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest. Am J Bot 88:1527–1534

    Article  PubMed  CAS  Google Scholar 

  • Sánchez JM, Ferrero V, Arroyo J, Navarro L (2010) Patterns of style polymorphism in five species of the South African genus Nivenia (Iridaceae). Ann Bot 106:321–331

    Article  PubMed  Google Scholar 

  • Scribailo RW, Barrett SCH (1991) Pollen-pistil interactions in tristylous Pontederia sagittata (Pontederiaceae). Floral heteromorphism and structural features of the pollen tube pathway. Am J Bot 78(12):1643–1661

    Article  Google Scholar 

  • Seger J, Eckhart VM (1996) Evolution of sexual systems and sex allocation in plants when growth and reproduction overlap. Proc R Soc London Ser B 263:833–841

    Article  Google Scholar 

  • Skotisberg C (1944) On the flower dimorphism in Hawaiian Rubiaceae. Ark f Bot 31:1–28

    Google Scholar 

  • Sobrevila C, Ramirez N, De Enrech NX (1983) Reproductive biology of Palicourea fendleri and P. petiolaris (Rubiaceae), heterostylous shrubs of a tropical cloud forest in Venezuela. Biotropica 15(3):161–169

    Article  Google Scholar 

  • Teng NJ, Chen T, Jin B, Wu XQ, Huang ZH, Li XJ, Wang YH, Mu XJ, Lin JX (2006) Abnormalities in pistil development result in low seed set in Leymus chinensis (Poaceae). Flora 201:658–667

    Article  Google Scholar 

  • Verdcourt B (1958) Remarks on the classification of the Rubiaceae. Bull Jard Bot Brux 28:209–281

    Article  Google Scholar 

  • Vithanage HIMV, Gleeson PA, Clarke AE (1980) The nature of callose produced during self-pollination in Secale cereale. Planta 148:498–509

    CAS  Google Scholar 

  • Wallander E (2001) Evolution of wind pollination in Fraxinus (Oleaceae): an ecophylogenetic approach. Dissertation, Göteborg University

  • Wang YQ, Zhang DX, Chen ZY (2004) Pollen histochemistry and pollen: ovule ratios in Zingiberaceae. Ann Bot 94:583–591

    Article  PubMed  Google Scholar 

  • Webb CJ (1999) Empirical studies: evolution and maintenance of dimorphic breeding systems. In: Geber MA, Dawson TE, Delph LE (eds) Gender and sexual dimorphism in flowering plants. Springer, New York, pp 61–95

    Google Scholar 

  • Wu XQ, Li AM, Zhang DX (2009) Cryptic self-incompatibility and distyly in Hedyotis acutangula Champ. (Rubiaceae). Plant Biol 12(3):484–494

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Fundation of China (grant nos. 31170184, 31070161 and 31000109) and by the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EW-Z-6-6 and KZCX2-YW-414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianxiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Luo, Z., Wu, X. et al. Functional dioecy in Morinda parvifolia (Rubiaceae), a species with stigma-height dimorphism. Plant Syst Evol 298, 775–785 (2012). https://doi.org/10.1007/s00606-011-0588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0588-y

Keywords

Navigation