Skip to main content
Log in

Evolutionary dynamics of serpentine adaptation in Onosma (Boraginaceae) as revealed by ITS sequence data

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Plant life on serpentine soils has been a topic of research for decades, but the evolutionary dynamics of adaptation to such a stressful habitat is still incompletely understood, especially in old-world groups. We present a study addressing this issue using Onosma (Boraginaceae) as the model system and a molecular phylogenetic approach. Original ITS sequences were generated for all the obligate endemics allopatrically distributed on the ophiolitic “islands” of the southeastern Euro-Mediterranean region, in addition to most of the species facultatively growing on ultramafics and a broad sample of non-serpentine species. Parsimony and Bayesian reconstructions showed that obligate endemics belonged to six distantly related clades, five continental and one insular in the Aegean sea (Cyprus). Lack of a common ancestor and of correlation between geographic and genetic distances between the endemics suggested polyphyletic and polytopic evolution on the different outcrops. Preference for non-serpentine habitats appeared as the ancestral condition, but constitutive preadaptive traits such as drought tolerance and ability to cope with high soil concentrations of magnesium have probably favoured multiple events in the colonization of ultramafics. Tree topology and absolute age estimations suggest that xerophytic Onosma underwent a rapid radiation in correspondence with the Messinian salinity crisis of the Mediterranean (6–5.3 mya), and that the endemic lineages originated at the beginning of the Pleistocene. Serpentine “islands” may have acted as refugial habitats during the cold climatic phases, and then as major determinants of adaptive speciation due to isolation of populations and the selective pressure of soil constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    Article  PubMed  Google Scholar 

  • Baldwin BG (2005) Origin of the serpentine-endemic herb Layia discoidea from the widespread L. glandulosa (Compositae). Evolution 59:2473–2479

    PubMed  Google Scholar 

  • Ball PW (1972) Onosma L. In: Tutin TG, Heywood VH, Burges MA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea 3. Cambridge University Press, Cambridge, pp 89–94

    Google Scholar 

  • Baltisberger M, Baltisberger E (1995) Cytological data of Albanian plants. Candollea 50(2):457–495

    Google Scholar 

  • Böhle U-R, Hilger HH, Martin WF (1996) Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proc Natl Acad Sci U S A 93:11740–11745

    Article  PubMed  Google Scholar 

  • Brady KU, Kruckeberg AR, Bradshaw HD Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266

    Article  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides, Portland

    Google Scholar 

  • Cecchi L (2011) A reappraisal of Phyllolepidum (Brassicaceae), a neglected genus of the European flora, and its relationships in tribe Alysseae. Pl Biosyst 145(3). doi:10.1080/11263504.2011.580789

  • Cecchi L, Selvi F (2009) Phylogenetic relationships of the monotypic genera Halacsya and Paramoltkia and the origins of serpentine adaptation in circummediterranean Lithospermeae (Boraginaceae): insights from ITS and matK DNA sequences. Taxon 58:700–714

    Google Scholar 

  • Cecchi L, Gabbrielli R, Arnetoli M, Gonnelli C, Hasko A, Selvi F (2010) Evolutionary lineages of Ni-hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. Ann Bot 106:751–767

    Article  PubMed  CAS  Google Scholar 

  • Constantinidis T, Bareka E-P, Kamari G (2002) Karyotaxonomy of Greek serpentine angiosperms. Bot J Linn Soc 139:109–124

    Article  Google Scholar 

  • Coppi A, Selvi F, Bigazzi M (2006) Chromosome studies in Mediterranean species of Boraginaceae. Fl Medit 16:253–274

    Google Scholar 

  • Crawford DJ (2010) Progenitor-derivative species pairs and plant speciation. Taxon 59:1413–1423

    Google Scholar 

  • de Kok R (2002) Are plant adaptations to growing on serpentine soil rare or common? A few case studies from New Caledonia. Adansonia ser 3 24(2):229–238

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Feliner GN, Rosselló JA (2007) Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol 44:911–919

    Article  Google Scholar 

  • Givnish TJ (2010) The ecology of plant speciation. Taxon 59:1326–1366

    Google Scholar 

  • Gustafson DJ, Romano G, Latham RE, Morton JK (2003) Amplified fragment length polymorphism analysis of genetic relationships among the serpentine barrens endemic Cerastium velutinum Rafinesque var. villosissimum Pennel (Caryophyllaceae) and closely related Cerastium species. J Torr Bot Soc 130:218–223

    Article  Google Scholar 

  • Hajiboland R, Manafi MH (2007) Flora of heavy metal-rich soils in NW Iran and some potential hyper-accumulator and accumulator species. Acta Bot Croat 66:177–195

    CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hsü K, Montadert L, Bernoulli D, Cita MB, Garrison RE, Kidd RB, Meleries F, Muller C, Wright R (1977) History of the Mediterranean salinity crisis. Nature 267:399–403

    Article  Google Scholar 

  • Hu Y (2007) Pharmacognostical studies on zicao and related herbs of Boraginaceae. PhD Thesis, Baptist University of Hong-Kong

  • Hughes R, Bachmann K, Smirnoff N, Macnair MR (2001) The role of drought tolerance in serpentine tolerance in the Mimulus guttatus Fischer ex DC. complex. S Afr J Sci 97:581–586

    Google Scholar 

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  PubMed  CAS  Google Scholar 

  • Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508

    PubMed  CAS  Google Scholar 

  • Kelly LJ, Ameka JK, Chase MW (2010) DNA barcoding of African Podostemaceae (river-weeds): a test of proposed barcode regions. Taxon 59:251–260

    Google Scholar 

  • Kolarčik V, Zozomová-Lihová J, Mártonfi P (2010) Systematics and evolutionary history of the Asterotricha group of the genus Onosma (Boraginaceae) in central and southern Europe inferred from AFLP and nrDNA ITS data. Pl Syst Evol 290:21–45

    Article  Google Scholar 

  • Kruckeberg AR (2002) Geology and plant life: the effects of landforms and rock type on plants. University of Washington Press, Seattle, pp 160–181

    Google Scholar 

  • Lefèbvre C, Vernet P (1990) Microevolutionary processes on contaminated deposits. In: Shaw J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, pp 286–297

    Google Scholar 

  • Lombini A, Dinelli E, Ferrari C, Simoni A (1998) Plant-soil relationships in the serpentinite screes of Mt. Prinzera (northern Apennines, Italy). J Geochem Explor 64:19–33

    Article  CAS  Google Scholar 

  • MacNair MR, Gardner M (1998) The evolution of edaphic ecotypes. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 157–171

    Google Scholar 

  • Mansion G, Selvi F, Guggisberg A, Conti E (2009) Origin of Mediterranean insular endemics in the Boraginales: integrative evidence from molecular dating and ancestral area reconstruction. J Biogeogr 36:1282–1296

    Article  Google Scholar 

  • Meikle RD (1985) Flora of Cyprus 2. The Bentham-Moxon Trust, Royal Botanic Gardens, Kew, pp 1157–1162

    Google Scholar 

  • Mengoni A, Baker AJM, Bazzicalupo M, Reeves RD, Adigüzel N, Chianni E, Galardi F, Gabbrielli R, Gonnelli C (2003) Evolutionary dynamics of nickel hyperaccumulation in Alyssum revealed by ITS nrDNA analysis. New Phytol 159:691–699

    Article  CAS  Google Scholar 

  • Mengoni A, Selvi F, Cusimano N, Galardi F, Gonnelli C (2006) Genetic diversity inferred from AFLP fingerprinting in populations of Onosma echioides (Boraginaceae) from serpentine and calcareous soils. Pl Biosyst 140:211–219

    Article  Google Scholar 

  • Mota JF, Medina-Cazorla JM, Navarro FB, Pérez-García FJ, Pérez-Latorre A, Sánchez-Gómez P, Torres JA, Benavente A, Blanca G, Gil C, Lorite J, Merlo ME (2008) Dolomite flora of the Baetic Ranges glades (South Spain). Flora 203(5):359–375

    Article  Google Scholar 

  • Nyberg Berglund AB, Westerbergh A (2001) Two postglacial immigration lineages of the polyploid Cerastium alpinum (Caryophyllaceae). Hereditas 134:171–183

    Article  Google Scholar 

  • Nyberg Berglund AB, Dalgren S, Westerberg A (2004) Evidence for parallel evolution and site-specific selection of serpentine tolerance in Cerastium alpinum during the colonization of Scandinavia. New Phytol 161:199–209

    Article  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Bioinformatics 12(4):357–358

    Article  CAS  Google Scholar 

  • Patterson TB, Givnish TJ (2003) Geographic cohesion, chromosomal evolution, parallel adaptive radiations, and consequent floral adaptations in Calochortus (Calochortaceae): evidence from a cpDNA phylogeny. New Phytol 161:253–264

    Article  Google Scholar 

  • Pavlova D (2009) Onosma bulgarica sp. nov. (Boraginaceae-Lithospermeae) found on serpentine in Bulgaria. Nordic J Bot 27:216–221

    Article  Google Scholar 

  • Petrova A (1989) Onosma L. In: Jordanov D (ed) Flora Reipublicae Popularis Bulgaricae 9. Bulgarian Academy of Sciences, Sofia, pp 126–134

    Google Scholar 

  • Phitos D, Constantinidis T, Kamari G ((2009)) The red data book of rare and threatened plants of Greece 2. Hellenic Botanical Society, Patras, pp 226–228

    Google Scholar 

  • Rajakaruna N, Boyd RS (2009) Advances in serpentine geoecology: a retrospective. Northeast Nat 16(5):1–7

    Article  Google Scholar 

  • Rajakaruna N, Baldwin BG, Chan R, Desrochers AM, Bohm BA, Whitton J (2003) Edaphic races and phylogenetic taxa in the Lasthenia californica complex (Asteraceae, Heliantheae): an hypothesis of parallel evolution. Mol Ecol 12:1675–1679

    Article  PubMed  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Rechinger KH (1957) Plantae novae graeco-macedonicae, imprimis serpentinicolae. Anz Öst Akad Wiss Math-Naturwiss Kl 94:21–27

    Google Scholar 

  • Riedl H (1967) Onosma L. In: Rechinger KH (ed) Flora Iranica 48. Akademische Druck, Graz, pp 169–212

    Google Scholar 

  • Riedl H (1979) Onosma L. In: Davis PH (ed) Flora of Turkey and the East Aegean islands 6. Edinburgh University Press, Edinburgh, pp 326–376

    Google Scholar 

  • Rohlf FJ (1992) NTSYS-pc. Numerical taxonomy and multivariate analysis system. Version 2.0. Exeter, New York

    Google Scholar 

  • Ronquist F, Huelsenbeck LP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rouchy JM, Caruso A (2006) The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sedim Geol 188:35–67

    Article  Google Scholar 

  • Sang T, Zhong Y (2000) Testing hybridization hypotheses based on incongruent gene trees. Syst Biol 49:422–434

    Article  PubMed  CAS  Google Scholar 

  • Selvi F (2007) Diversity, geographic variation and conservation of the serpentine flora of Tuscany (Italy). Biodivers Conserv 16:1423–1439

    Article  Google Scholar 

  • Selvi F (2009) New findings of Anthemis cretica (Asteraceae) on serpentine outcrops of Tuscany (central Italy). Fl Medit 19:119–128

    Google Scholar 

  • Selvi F, Cecchi L, Coppi A (2009) Phylogeny, karyotype evolution and taxonomy of Cerinthe L (Boraginaceae). Taxon 58:1307–1325

    Google Scholar 

  • Stevanović V, Tan K, Iatrou G (2003) Distribution of the endemic Balkan flora on serpentine I. Obligate serpentine endemics. Pl Syst Evol 242:149–170

    Article  Google Scholar 

  • Strid A (1995) Onosma elegantissima Rech. fil. & Goulimy. In: Phitos D, Strid A, Snogerup S, Greuter W (eds) The red data book of rare and threatened plants of Greece. K. Michalas, Athens, pp 378–379

    Google Scholar 

  • Swofford DL (2000) PAUP* 4.0. Phylogenetic analysis using parsimony (and other methods) vers. 4.0. Sinauer, Sunderland, MA

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tan K, Iatrou G (2001) Endemic plants of Greece, The Peloponnese. Gads, Copenhagen

    Google Scholar 

  • Teppner H (1971) Cytosystematische Studien an Onosma (Boraginaceae). Die Formenkreise von O. echioides, O. helveticum und O. arenarium. Ber Deutsch Bot Ges 84:691–696

    Google Scholar 

  • Teppner H (1974) Karyosystematik einiger asiatischer Onosma-Arten (Boraginaceae). Inkl. O. inexspecatum Teppner sp. nov. Pl Syst Evol 123:61–82

    Article  Google Scholar 

  • Teppner H (1981) Karyosystematik von Onosma stellulatum, O. pygmaeum und O. leptanthum (Boraginaceae). Bot Jahrb Syst 102:297–306

    Google Scholar 

  • Teppner H (1988) Onosma stridii spec. nova (Boraginaceae) aus Griechenland. Phyton (Horn) 28:271–275

    Google Scholar 

  • Teppner H (1991a) Onosma L. In: Strid A, Tan K (eds) Mountain flora of Greece 2. Edinburgh University Press, Edinburgh, pp 26–39

    Google Scholar 

  • Teppner H (1991b) Karyology of some Greek Onosma species. Bot Chron 10:271–292

    Google Scholar 

  • Teppner H (1996) Blüten und Blütenbesucher bei Onosma (Boraginaceae–Lithospermeae). Feddes Rep 106:525–532

    Article  Google Scholar 

  • Teppner H, Iatroú G (1987) Onosma sangiasense spec. nova (Boraginaceae) from Peloponnisos (Greece). Phyton 27:285–288

    Google Scholar 

  • Thomas DC, Weigend M, Hilger HH (2008) Phylogeny and systematics of Lithodora (Boraginaceae–Lithospermeae) and its affinities to the monotypic genera Neatostema, Mairetis, Halacsya and Paramoltkia based on ITS1 and trnLUAA-sequence data and morphology. Taxon 57:79–97

    Google Scholar 

  • Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet 42:260–263

    Article  PubMed  CAS  Google Scholar 

  • Vijayan K, Tsou CH (2010) DNA barcoding in plants: taxonomy in a new perspective. Curr Sci 99(11):1530–1541

    CAS  Google Scholar 

  • Weigend M, Gottschling M, Selvi F, Hilger HH (2009) Marbleseeds are gromwells – systematics and evolution of Lithospermum and allies (Boraginaceae tribe Lithospermeae) based on molecular and morphological data. Mol Phylogenet Evol 52:755–768

    Article  PubMed  Google Scholar 

  • Westerbergh A (1995) Silene dioica and its adaptation and evolution on serpentine. In: Jaffré T, Reeves R, Becquer T (eds) Proceedings of the Second International Conference on Serpentine Ecology. ORSTOM, Noumea, New Caledonia, p 49

    Google Scholar 

  • Westerbergh A, Saura A (1992) The effect of serpentine on the population structure of Silene dioica (Caryophyllaceae). Evolution 46:1537–1548

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White JW (eds) PCR protocols. A guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffré T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12(1):106–116

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank H.H. Hilger, M. Weigend (Berlin) and F. Pushtajia (Sarajevo), for providing material of Onosma; L. Pignotti (Wien) and the curators of the herbaria cited in “Materials and methods” for allowing study of their collections. Two anonymous reviewers provided useful comments on the first version of the manuscript. Research grants from the University of Firenze and the Italian Ministry for Scientific Research are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cecchi.

Appendix

Appendix

List of GenBank accessions of additional species analyzed to define the time-frame for the evolution of Onosma (see Fig. 3):

Cerinthe glabra, FJ541016; Echium acanthocarpum, EU048853.1; E. aculeatum, EU048849.1; L43169; E. albicans, L43172; E. arenarium, EU919584; E. asperrimum, L43176; E. auberianum, L43180; E. bonnetii, L43184; E. brevirame, L43188; E. callithyrsum, L43196; E. candicans, EU048856.1; L43192; E. creticum, FJ763249; L43208; E. decaisnei, EU048852.1; L43212; E. giganteum, L43224; E. handiense, L43220; E. hierrense, EU048848.1; L43216; E. horridum, L43228; E. humile, AF284109; E. hypertropicum, EU048858.1; L43232; E. italicum, L43236; E. leucophaeum, L43240; E. lusitanicum, EU048847.1; L43252; E. nervosum, EU048855.1; L43256; E. onosmaefolium, L43260; E. parviflorum, L43264; E. pininana, L43268; E. pitardii, L43322; E. plantagineum, L43272; E. pycnanthum, AF284108; E. rosulatum, L43276; E. sabulicola, L43288; E. simplex, EU048851.1; L43284; E. stenosiphon, EU048859.1; L43319; E. strictum, L43292; E. tenue subsp. dumosum, AF284106; E. triste, L43324; E. tuberculatum, L43300; E. vilmorinianum, AF284107; E. virescens, EU048850.1; L43296; E. vulcanorum, EU048857.1; L43304; E. vulgare, AJ555896; AY092900; FJ763247; FJ789862; L43312; E. webbii, EU048854.1; L43308; E. wildpretii, L43316; Moltkia petraea, EU919596.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecchi, L., Coppi, A. & Selvi, F. Evolutionary dynamics of serpentine adaptation in Onosma (Boraginaceae) as revealed by ITS sequence data. Plant Syst Evol 297, 185–199 (2011). https://doi.org/10.1007/s00606-011-0506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0506-3

Keywords

Navigation