Skip to main content
Log in

Pollen grain size, stigma depth, and style length: the relationships revisited

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

I examine data and review information in the literature to test hypotheses proposed by Delpino and Darwin to explain the source of nutrients utilized by pollen tubes. In 1867, Delpino, in his discussion of distyly, suggested that the positive relationship between pollen grain size and style length was based on the pollen grains containing sufficient nutrients to sustain the growth of their pollen tubes through their respective styles. Darwin (The different forms of flowers on plants of the same species, 2nd edn. J. Murray, London, 1884) rejected Delpino’s suggestion based on his examination of distylous species whose morphs produced pollen grains whose sizes were not proportionate to the lengths of their respective styles. Darwin then proposed that pollen tubes first grow autotrophically, i.e., through the stigma, then heterotrophically in the style. This should result in a positive relationship between pollen grain size and stigma depth, if pollen tubes grow autotrophically through the stigma. I examined 15 species in Fabaceae and 20 species in Proteaceae to test the two hypotheses. Pollen grain size was correlated with stigma depth among the Fabaceae, i.e., consistent with Darwin’s hypothesis, and was not correlated with style length in either family, i.e., inconsistent with Delpino’s proposal. Comparisons of related species, in general, were consistent with Darwin’s hypothesis. In addition, information in the literature provided no evidence that pollen tubes obtain resources on or in the stigma, i.e., pollen tube growth from the stigmatic surface to the style was autotrophic. In contrast, pollen tubes obtain an array of resources from the transmission tissue, thus there is little reason for pollen grains to contain those resources. In addition, I suggest that positive correlations between pollen grain size and style/pistil length may be a result of both being correlated with stigma depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar R, Bernardello G, Galetto L (2002) Pollen–pistil relationships and pollen size-number trade-offs in species of the tribe Lycieae (Solanaceae). J Plant Res 115:335–340

    Article  PubMed  Google Scholar 

  • Ameele RJ (1982) The transmitting tract in Gladiolus. 1. The stigma and the pollen–stigma interaction. Am J Bot 69:389–401

    Article  Google Scholar 

  • Amici J-B (1830) Note sur le mode d’action du pollen sur le stigmate: extrait d’un letter de M. Amici à M. Mirbel. Ann Sci Nat (Paris) 21:329–332

    Google Scholar 

  • Baker HG, Baker I (1979) Starch in Angiosperm pollen and its evolutionary significance. Am J Bot 66:591–600

    Article  Google Scholar 

  • Baker HG, Baker I (1982) Starchy and starchless pollen in Onagraceae. Ann Missouri Bot Gard 69:748–754

    Article  Google Scholar 

  • Barrett SCH, Wilken DH, Cole WW (2000) Heterostyly in Lamiaceae: the case of Salvia brandegeei. Plant Syst Evol 223:211–219

    Article  Google Scholar 

  • Bigazzi M, Selvi F (2000) Stigma form and surface in the tribe Boragineae (Boraginaceae): micromorphological diversity, relationships with pollen, and systematic relevance. Can J Bot 78:388–408

    Article  Google Scholar 

  • Campbell RJ, Ascher PD (1975) Incorporation of radioactive label into nucleic acids of compatible and incompatible pollen tubes of Lilium longiflorum Thunb. Theor Appl Genet 46:143–148

    CAS  Google Scholar 

  • Casper B (1983) The efficiency of pollen transfer and rates of embryo initiation in Cryptantha (Boraginaceae). Oecologia 59:262–268

    Article  Google Scholar 

  • Cheung AY (1996) The pollen tube growth pathway: its molecular and biochemical contributions and responses to pollination. Sex Plant Reprod 9:330–336

    Article  CAS  Google Scholar 

  • Cheung AY, Wu H-M, Stilio VD, Glaven R, Chen C, Wang E, Ogdahl J, Estavillo A (2000) Pollen–pistil interactions in Nicotiana tabacum. Ann Bot 85(Suppl A):29–37

    Article  CAS  Google Scholar 

  • Ciampolini F, Cresti M, Sarfatti G, Tiezzi A (1981) Ultrastructure of the stylar canal cells of Citrus limon (Rutaceae). Plant Syst Evol 138:263–274

    Article  Google Scholar 

  • Ciampolini F, Cresti M, Kapil RN (1983) Fine structure and cytochemical characteristics of style and stigma in olive. Caryologia 36:211–230

    CAS  Google Scholar 

  • Ciampolini F, Shivanna KR, Cresti M (1990) The structure and cytochemistry of the pistil of Sternbergia lutea (Amaryllidaceae). Ann Bot 66:703–712

    CAS  Google Scholar 

  • Ciampolini F, Faleri C, Cresti M (1995) Structural and cytochemical analysis of the stigma and style of Tibouchina semidecandra Cogn. (Melastomataceae). Ann Bot 76:421–427

    Article  Google Scholar 

  • Clarke A, Gleeson P, Harrison S, Knox RB (1979) Pollen–stigma interactions: identification and characterization of surface components with recognition potential. Proc Natl Acad Sci USA 76:3358–3362

    Article  PubMed  CAS  Google Scholar 

  • Clifford SC, Sedgley M (1993) Pistil structure of Banksia menziesii R.Br. (Proteaceae) in relation to fertility. Aust J Bot 41:481–490

    Article  Google Scholar 

  • Cresti M, Ciampolini F, van Went JL, Wilms HJ (1982) Ultrastructure and histochemistry of Citrus limon (L.) stigma. Planta 156:1–9

    Article  Google Scholar 

  • Cresti M, Keijzer CJ, Tiezzi A, Ciampolini F, Focardi S (1986) Stigma of Nicotiana: ultrastructural and biochemical studies. Am J Bot 73:1713–1722

    Article  CAS  Google Scholar 

  • Crisp MD, Weston PH (1995) Mirbelieae. In: Crisp M, Doyle JJ (eds) Advances in legume systematics 7: phylogeny. Royal Botanic Gardens, Kew, pp 245–282

    Google Scholar 

  • Cruden RW (1997) Implications of evolutionary theory to applied pollination ecology. In: Richards KW (ed) Pollination: from theory to practise. Proceedings of the seventh international symposium on pollination. Acta Horticulturae, pp 27–51

  • Cruden RW (2000) Pollen grains: why so many? Plant Syst Evol 222:143–165

    Article  Google Scholar 

  • Cruden RW, Lyon DL (1985) Correlations among stigma depth, style length, and pollen grain size: do they reflect function or phylogeny? Bot Gaz 146:143–149

    Article  Google Scholar 

  • Cruden RW, Miller-Ward S (1981) Pollen-ovule ratio, pollen size, and the ratio of stigmatic area to the pollen-bearing area of the pollinator: an hypothesis. Evolution 35:964–974

    Article  Google Scholar 

  • Darwin C (1884) The different forms of flowers on plants of the same species, 2nd edn. J. Murray, London

    Google Scholar 

  • Delpino F (1867) Sull’opera, la distribuzione dei sessi nelle piante e la legge che osta alla perennità della fecundazione consanguinea. Atti Soc Ital Sci Natl 10:272–303

    Google Scholar 

  • de Nettancourt D (1977) Incompatibility in Angiosperms. Springer, Berlin

    Google Scholar 

  • Dickinson HG, Lawson J (1975) Pollen tube growth in the stigma of Oenothera organensis following compatible and incompatible intraspecific pollinations. Proc R Soc Lond Ser B Biol Sci 188:327–344

    Article  Google Scholar 

  • Doyle JJ, Doyle JL, Ballenger JA, Dickson EE, Kajita T, Ohashi H (1997) A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. Am J Bot 84:541–554

    Article  CAS  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16(Suppl):S84–S97

    Article  PubMed  CAS  Google Scholar 

  • Feinsinger P, Busby WH (1987) Pollen carryover: experimental comparisons between morphs of Palicourea lasiorrachis (Rubiaceae), a distylous, bird-pollinated, tropical treelet. Oecologia 73:231–235

    Article  Google Scholar 

  • Franchi GG, Bellani L, Nepi M, Pacini E (1996) Types of carbohydrate reserves in pollen: localization, systematic distribution and ecophysiological significance. Flora 191:143–159

    Google Scholar 

  • Galloni M, Podda L, Vivarelli D, Cristofolini G (2007) Pollen presentation, pollen-ovule ratios, and other reproductive traits in Mediterranean legumes (Fam. Fabaceae—Subfam. Faboideae). Plant Syst Evol 266:147–164

    Article  Google Scholar 

  • Ganders FR (1979) The biology of heterostyly. New Zealand J Bot 17:607–635

    Google Scholar 

  • Gawlik SR (1984) An ultrastructural study of transmitting issue development in the pistil of Lilium leucanthum. Am J Bot 71:512–521

    Article  Google Scholar 

  • Germeraad JH, Hopping CA, Muller J (1968) Palynology of tertiary sediments from tropical areas. Rev Paleobot Palynol 6:189–348

    Article  Google Scholar 

  • Ghorbel S, Nabli MA (1998) Pollen, pistil and their interrelations in Borago officinalis and Heliotropium europaeum (Boraginaceae). Grana 37:203–214

    Google Scholar 

  • Ghosh S, Shivanna KR (1982) Anatomical and cytochemical studies on the stigma and style in some legumes. Bot Gaz 143:311–318

    Article  Google Scholar 

  • Ghosh S, Shivanna KR (1984) Structure and cytochemistry of the stigma and pollen–pistil interaction in Zepheranthes. Ann Bot 53:91–105

    Google Scholar 

  • González MV, Coque M, Herrero M (1996) Pollen–pistil interaction in kiwifruit (Actinidia deliciosa; Actinidiaceae). Am J Bot 83:148–154

    Article  Google Scholar 

  • Graaf BHJ, de Derksen JWM, Mariani C (2001) Pollen and pistil in the progamic phase. Sex Plant Reprod 14:41–55

    Article  Google Scholar 

  • Grayum MH (1985) Evolutionary and ecological significance of starch storage in pollen of the Araceae. Am J Bot 72:1565–1577

    Article  Google Scholar 

  • Harden GJ (1991) Floral of New South Wales. Royal Botanic Garden, Sydney

    Google Scholar 

  • Haskell DW, Rogers OM (1985) RNA synthesis by vegetative and sperm nuclei of trinucleate pollen. Cytologia 50:805–809

    Google Scholar 

  • Herrera J (2001) The variability of organs differentially involved in pollination and correlations of traits in Genisteae (Leguminosae: Papilionoideae). Ann Bot 88:1027–1037

    Article  Google Scholar 

  • Herrero M, Dickinson HG (1979) Pollen–pistil incompatibility in Petunia hybrida: changes in the pistil following compatible and incompatible interspecific crosses. J Cell Sci 36:1–18

    PubMed  CAS  Google Scholar 

  • Herrero M, Dickinson HG (1980) Pollen tube growth following compatible and incompatible intraspecific pollinations in Petunia hybrida. Planta 148:217–221

    Article  Google Scholar 

  • Herrero M, Hormaza JI (1996) Pistil strategies controlling pollen tube growth. Sex Plant Reprod 9:343–347

    Article  Google Scholar 

  • Herscovitch JC, Martin ARH (1989) Pollen–pistil interactions in Grevillea banksii. The pollen grain, stigma, transmitting tissue and in vitro pollinations. Grana 28:69–84

    Article  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1982) Pollen–stigma interaction in the Leguminosae: constituents of the stylar fluid and stigma secretion in Trifolium pratense L. Ann Bot 49:729–735

    CAS  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Shivanna KK (1981) Heterostyly in Primula. 1. Fine-structural and cytochemical features of the stigma and style in Primula vulgaris Huds. Protoplasma 107:171–187

    Article  Google Scholar 

  • Hiscock SJ, Doughty J, Dickinson HG (1995) Synthesis and phosphorylation of pollen proteins during the pollen–stigma interaction in self-compatible Brassica napus L. and self-incompatible Brassica oleracea L. Sex Plant Reprod 8:345–353

    Article  Google Scholar 

  • Hong SP, Han MJ (2002) The floral dimorphism in the rare endemic plant, Abeliophyllum distichum NAKAI (Oleaceae). Flora 197:317–325

    Google Scholar 

  • Hopping ME, Jerram EM (1979) Pollination of kiwifruit (Actinidia chinensis Planch.): stigma-style structure and pollen tube growth. New Zealand J Bot 17:233–240

    Google Scholar 

  • Hormaza JI, Herrero M (1996) Dynamics of pollen tube growth under different competition regimes. Sex Plant Reprod 9:153–160

    Article  Google Scholar 

  • Hulzink RJM, de Groot PFM, Croes AF, Quaedvlieg W, Twell D, Wullems GJ, van Herpen MMA (2002) The 5′-untranslated region of the ntp303 gene strongly enhances translation during pollen tube growth, but not during pollen maturation. Pl Physiol (Lancaster) 129:342–353

    Article  CAS  Google Scholar 

  • Janson J, Reinders MC, Vlakering AGM, van Tuyl JM, Keijzer CJ (1994) Pistil exudate production and pollen tube growth in Lilium longiflorum Thunb. Ann Bot 73:437–446

    Article  Google Scholar 

  • Jensen WA, Fisher DB (1969) Cotton embryogensis: the tissues of the stigma and style and their relation to the pollen tube. Planta 84:97–121

    Article  Google Scholar 

  • Kenrick J, Knox RB (1981) Structure and histochemistry of the stigma and style of some Australian species of Acacia. Aust J Bot 29:733–745

    Article  Google Scholar 

  • Kirk WDJ (1993) Interspecific size and number variation in pollen grains and seeds. Biol J Linn Soc 49:239–248

    Article  Google Scholar 

  • Knudsen JT, Olesen JM (1993) Buzz-pollination and patterns of sexual traits in North European Pyrolaceae. Am J Bot 80:900–913

    Article  Google Scholar 

  • Labarca C, Loewus F (1972) The nutritional role of pistil exudate in pollen tube wall formation in Lilium longiflorum. I. Utilization of injected stigma exudate. Pl Physiol (Lancaster) 50:7–14

    Article  CAS  Google Scholar 

  • Lind JL, Bönig I, Clarke AD, Anderson MA (1996) A style-specific 120-kDa glycoprotein enters pollen tubes of Nicotiana alata in vivo. Sex Plant Reprod 9:75–86

    Article  Google Scholar 

  • López J, Rodríguez-Riaño T, Ortega-Olivencia A, Devesa JA, Ruiz T (1999) Pollination mechanisms and pollen-ovule ratios in some Genisteae (Fabaceae) from southwestern Europe. Plant Syst Evol 216:23–47

    Article  Google Scholar 

  • López HA, Anton AM, Galetto L (2006) Pollen-size correlation and pollen-size number trade-off in species of Argentinian Nyctaginaceae with different pollen reserves. Plant Syst Evol 256:69–73

    Article  Google Scholar 

  • Lord EM (2001) Adhesion molecules in lily pollination. Sex Plant Reprod 14:57–62

    Article  CAS  Google Scholar 

  • Lord EM, Webster BD (1979) The stigmatic exudate of Phaseolus vulgaris L. Bot Gaz 140:266–271

    Article  CAS  Google Scholar 

  • Lubliner N, Singh-Cundy DT, Singh-Cundy A (2003) Characterization of the pollen growth transition in self-incompatible Petunia inflata. Sex Plant Reprod 15:243–253

    Google Scholar 

  • Lush WM, Spurck T, Joosten R (2000) Pollen tube guidance by the pistil of a solanaceous plant. Ann Bot 85(Suppl A):39–47

    Article  Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Miki-Hirosige H, Hoek IHS, Nakamura S (1987) Secretions from the pistil of Lilium longiflorum. Am J Bot 74:1709–1715

    Article  CAS  Google Scholar 

  • Olde P, Marriott N (1995) The Grevillea book. Kangaroo Press, Kenthurst

    Google Scholar 

  • Olson AR (1991) Gynoecial pathway for pollen tube growth in the genus Monotropa. Bot Gaz 152:154–163

    Article  Google Scholar 

  • Ortega Olivencia A, Ramos S, Rodriguez T, Devesa JA (1997) Floral biometry, floral rewards and pollen-ovule ratios in some Vicia from Extramadura Spain. Edinb J Bot 54:39–53

    Article  Google Scholar 

  • Owens SJ, McGrath S, Fraser MA, Fox LR (1984) The anatomy, histochemistry and ultrastructure of stigmas and styles in Commelinaceae. Ann Bot 54:591–603

    Google Scholar 

  • Pacini E (1996) Types and meaning of pollen carbohydrate reserves. Sex Plant Reprod 9:362–366

    Article  CAS  Google Scholar 

  • Plitmann U, Levin DA (1983) Pollen–pistil relationships in the Polemoniaceae. Evolution 37:957–967

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Richards AJ (1986) Plant breeding systems. George Allen and Unwin, London

    Google Scholar 

  • Rodríguez-Garcia MI, M’rani-Alaoui M, Fernández MC (2003) Behavior of storage lipids during development and germination of olive (Olea europea L.) pollen. Protoplasma 221:237–244

    PubMed  Google Scholar 

  • Roulston TH, Buchmann SL (2000) A phylogenetic reconsideration of the starch-pollen correlation. Evol Ecol Res 2:627–643

    Google Scholar 

  • Roulston TH, Cane JH, Buchmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen–pistil interactions or phylogeny? Ecol Monogr 70:617–643

    Google Scholar 

  • Sarkissian TS, Harder LD (2001) Direct and indirect responses to selection on pollen size in Brassica rapa L. J Evol Biol 14:456–468

    Article  Google Scholar 

  • Schmidt-Adam G, Murray BG (2002) Structure and histochemistry of the stigma and style of Metrosideros excelsa. New Zealand J Bot 40:95–103

    Google Scholar 

  • Shivanna KR, Owens SJ (1989) Pollen–pistil interactions (Papilionoideae). In: Stirton CH, Zarucchi JL (eds) Advances in legume biology. Monogr Syst Bot Missouri Bot Gard 29:157–182

  • Shivanna KR, Sastri DC (1981) Stigma-surface esterase activity and stigma receptivity in some taxa characterized by wet stigmas. Ann Bot 47:53–64

    CAS  Google Scholar 

  • Slater AT, Calder DM (1990) Fine structure of the set, detached cell stigma of the orchid Dendrobium speciosum Sm. Sex Plant Reprod 3:61–69

    Article  Google Scholar 

  • Small E (1988) Pollen-ovule patterns in tribe Trifolieae (Leguminosae). Plant Syst Evol 160:195–205

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Speranza A, Calzoni GL, Pacini E (1997) Occurrence of mono- or disaccharides and polysaccharide reserves in mature pollen grains. Sex Plant Reprod 10:110–115

    Article  CAS  Google Scholar 

  • Süss J, Tupý J (1982) Kinetics of uridine uptake and incorporation into RNA in tobacco pollen culture. Biol Plant 24:72–79

    Article  Google Scholar 

  • Swanson R, Edlund AF, Preuss D (2004) Species specificity in pollen–pistil interactions. Annual Rev Genet 38:793–818

    Article  CAS  Google Scholar 

  • Taylor LP, Helper PK (1997) Pollen grain germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491

    Article  PubMed  CAS  Google Scholar 

  • Tilton VR, Horner HT Jr (1980) Stigma, style, and obturator of Ornithogalum caudatum (Liliaceae) and their function in the reproductive process. Am J Bot 67:1113–1131

    Article  Google Scholar 

  • Torres C (2000) Pollen size evolution: correlation between pollen volume and pistil length in Asteraceae. Sex Plant Reprod 12:365–370

    Article  Google Scholar 

  • Tupý J, Hrabětová E, Balatková V (1977) Evidence for ribosomal RNA systhesis in pollen tubes in culture. Biol Plant 19:226–230

    Article  Google Scholar 

  • Wang Y-Q, Zhang D-X, Chen Z-Y (2004) Pollen histochemistry and pollen:ovule ratios in Zingiberaceae. Ann Bot 94:583–591

    Article  PubMed  Google Scholar 

  • Webb MC, Williams EG (1988) The pollen tube pathway in the pistil of Lycopersicon peruvianum. Ann Bot 61:415–423

    Google Scholar 

  • Weber M (1994) Stigma, style, and pollen pathway in Smyrnium perfoliatum (Apiaceae). Int J Plant Sci 155:437–444

    Article  Google Scholar 

  • Weber M, Frosch A (1995) The development of the transmitting tract in the pistil of Hacquetia epipactis (Apiaceae). Int J Plant Sci 156:615–621

    Article  Google Scholar 

  • Welk M Sr, Millington WF, Rosen WG (1965) Chemotropic activity and the pathway of the pollen tube in lily. Am J Bot 52:774–781

    Article  Google Scholar 

  • Weston PH, Barker NP (2006) A new suprageneric classification of the Proteaceae, with an annotated checklist of genera. Telopea 11:314–344

    Google Scholar 

  • Weterings K, Reijnen W, van Aarssen R, Kortstee A, Spijkers J, van Herpen M, Schrauwen J, Wullems G (1992) Characterization of a pollen-specific cDNA clone from Nicotiana tabacum expressed during microgametogenesis and germination. Plant Mol Biol 18:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Weterings K, Reijnen W, Wijn G, van de Heuvel K, Appeldoorn K, de Kort G, van Herpen M, Schrauwen J, Wullems G (1995) Molecular characterization of the pollen-specific genomic clone NTPg303 and in situ localization of expression. Sex Plant Reprod 8:11–17

    Article  Google Scholar 

  • Willemse MTM (1996) Progamic phase and fertilization in Gasteria verrucosa (Mill.) H. Duval: pollination signals. Sex Plant Reprod 9:348–352

    Article  Google Scholar 

  • Williams EG, Knox RB, Rouse JL (1982) Pollination sub-systems distinguished by pollen tube arrest after incompatible interspecific crosses in Rhododendron (Ericaceae). J Cell Sci 53:255–277

    Google Scholar 

  • Wu H-M, Wang H, Cheung AY (1995) A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 82:395–403

    Article  PubMed  CAS  Google Scholar 

  • Yang C-F, Guo Y-H (2004) Pollen size-number trade-off and pollen–pistil relationship in Pedicularis (Orbanchaceae). Plant Syst Evol 247:177–185

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

This research was carried out while a Visiting Fellow at the University of Wollongong, Wollongong, NSW, Australia. My thanks to the faculty, staff and students in the School of Biological Sciences and the Institute for Conservation Biology who helped make my visits both enjoyable and rewarding. Special thanks to Rob Whelan for making my visits possible, Julie Wright who attended to so many details, and James Wallman and Kristine French who provided access to critical equipment. My conversations with David Ayre, Ben Goodin, Kristine French, Evie Kroggel, James Madsen, Tanya Mason, Mats Olsson, Sharon Robinson, Craig Sherman, Tonia Schwartz, and Thomas Wanger helped make my visits both enjoyable and educational. Belinda Pellow provided access to the Janet Cosh Herbarium and checked the determinations of the voucher specimens. Peter Cuneo and the staff at the Mt. Annan Botanic Garden, Mt. Annan, NSW provided material of A. detmoldi F. Muell. and Lomatia fraserii R. Br. I am grateful to Barbara Briggs and Peter Weston of the National Herbarium, Royal Botanic Gardens, Sydney for sharing their extensive knowledge of the Proteaceae. M. Damm provided constructive criticism of the manuscript. This paper is dedicated to David and Virginia Lyon for the 38 years of friendship and especially for inviting me to be part of their Australian experience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert William Cruden.

Appendix 1: Sources of material included in this study

Appendix 1: Sources of material included in this study

Table 3

Northwest of Wollongong:

  1. 1.

    Intersection of Mt. Kiera Rd. and Harry Graham Rd. (road to Mt. Kembla).

  2. 2.

    Picton Road, 30–50 m east of Mt. Kiera Rd.

  3. 3.

    Cordeaux Dam Road, ca. 0.7 km south of Picton Road (Rt. 88).

Route 60 northeast of Wollongong:

  1. 4.

    Route 60, between Sublime Point and Darkes Forest Road, opposite Bomerang Golf Course.

  2. 5.

    Darkes Forest Road, ca. 200 m north and south of track into the Dharawal State Recreation Area (near end of paved road).

  1. 6.

    Woronora Dam Road, ca. 4.7 km N Route 60.

  2. 7.

    Woronora Dam Road, SE of track leading to Sarahs Knob.

Route 9, southeast of Robertson:

  1. 8.

    Route 9, ca. half way between Carrington Falls Road and Barren Grounds Nature Preserve.

  2. 9.

    Carrington Falls Road, ca. 0.8 km from Route 9.

  3. 10.

    Carrington Falls Road, ca. 1.4 km from Route 9.

  4. 11.

    Carrington Falls Road, 0.5–1.0 km south of Kangaroo River.

Belmore Falls Road, south of Robertson:

  1. 12.

    Ca. 6.8 km from Route 48 in Robertson (6.1 km from South Street).

  2. 13.

    Ca. 7.6 km from Route 48 in Robertson (6.9 km from South Street).

Blue Mountains:

  1. 14.

    Wentworth Falls, below car park.

  2. 15.

    Blackheath. Fairfax track, in woods at Govett’s Leap

Road to Wombeyan Caves:

  1. 16.

    Ca. 15 km NW of the tunnel and ca. 31 km NW of Greenhills Rd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruden, R.W. Pollen grain size, stigma depth, and style length: the relationships revisited. Plant Syst Evol 278, 223–238 (2009). https://doi.org/10.1007/s00606-008-0142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0142-8

Keywords

Navigation