Skip to main content
Log in

Microscopic conservation laws for integrable lattice models

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We consider two discrete completely integrable evolutions: the Toda Lattice and the Ablowitz–Ladik system. The principal thrust of the paper is the development of microscopic conservation laws that witness the conservation of the perturbation determinant under these dynamics. In this way, we obtain discrete analogues of objects that we found essential in our recent analyses of KdV, NLS, and mKdV. In concert with this, we revisit the classical topic of microscopic conservation laws attendant to the (renormalized) trace of the Green’s function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)

    Article  MathSciNet  Google Scholar 

  2. Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations. J. Math. Phys. 16, 598–603 (1975)

    Article  MathSciNet  Google Scholar 

  3. Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations and Fourier analysis. J. Math. Phys. 17(6), 1011–1018 (1976)

    Article  MathSciNet  Google Scholar 

  4. Bringmann, B., Killip, R., Visan, M.: Global well-posedness for the fifth-order KdV equation in \({H}^{-1}({\mathbb{R}})\). Preprint (2019). arXiv:1912.01536

  5. Flaschka, H.: The Toda lattice. II. Existence of integrals. Phys. Rev. B 9(4), 1924–1925 (1974)

    Article  MathSciNet  Google Scholar 

  6. Gelfand, I.M., Dikiĭ, L.A.: Asymptotic properties of the resolvent of Sturm–Liouville equations, and the algebra of Korteweg–de Vries equations. Uspehi Mat. Nauk 30(5), 67–100 (1975)

    MathSciNet  Google Scholar 

  7. Gesztesy, F., Holden, H.: Local conservation laws and the Hamiltonian formalism for the Toda hierarchy revisited. Skr. K. Nor. Vidensk. Selsk. 3, 1–30 (2006)

    MATH  Google Scholar 

  8. Gesztesy, F., Holden, H., Michor, J., Teschl, G.: Local conservation laws and the Hamiltonian formalism for the Ablowitz–Ladik hierarchy. Stud. Appl. Math. 120(4), 361–423 (2008)

    Article  MathSciNet  Google Scholar 

  9. Harrop-Griffiths, B., Killip, R., Vişan, M.: Sharp well-posedness for the cubic NLS and mKdV in \(H^s({\mathbb{R}})\). Preprint (2020). arXiv:2003.05011

  10. Kato, T.: On the Cauchy problem for the (generalized) Korteweg–de Vries equation. In: Studies in Applied Mathematics, volume 8 of Adv. Math. Suppl. Stud., pp. 93–128. Academic Press, New York (1983)

  11. Killip, R., Murphy, J., Visan, M.: Invariance of white noise for KdV on the line. Invent. Math. 222(1), 203–282 (2020)

    Article  MathSciNet  Google Scholar 

  12. Killip, R., Vişan, M.: KdV is well-posed in \(H^{-1}\). Ann. Math. (2) 190(1), 249–305 (2019)

    Article  MathSciNet  Google Scholar 

  13. Killip, R., Vişan, M., Zhang, X.: Low regularity conservation laws for integrable PDE. Geom. Funct. Anal. 28(4), 1062–1090 (2018)

    Article  MathSciNet  Google Scholar 

  14. Koch, H., Tataru, D.: Conserved energies for the cubic nonlinear Schrödinger equation in one dimension. Duke Math. J. 167(17), 3207–3313 (2018)

    Article  MathSciNet  Google Scholar 

  15. Nenciu, I.: Lax pairs for the Ablowitz–Ladik system via orthogonal polynomials on the unit circle. Int. Math. Res. Not. 11, 647–686 (2005)

    Article  MathSciNet  Google Scholar 

  16. Toda, M.: Waves in nonlinear lattice. Prog. Theor. Phys. Suppl. 45, 174–200 (1970)

    Article  Google Scholar 

  17. Toda, M.: Theory of Nonlinear Lattices, Volume 20 of Springer Series in Solid-State Sciences, 2nd edn. Springer, Berlin (1989)

    Google Scholar 

  18. Zaharov, V.E., Faddeev, L.D.: The Korteweg–de Vries equation is a fully integrable Hamiltonian system. Funkcional. Anal. i Priložen. 5(4), 18–27 (1971)

    MathSciNet  Google Scholar 

  19. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Ž. Èksper. Teoret. Fiz. 61(1), 118–134 (1971)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

R. K. was supported by NSF Grant DMS-1856755 and M. V. by NSF Grant DMS-1763074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Harrop-Griffiths.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrop-Griffiths, B., Killip, R. & Vişan, M. Microscopic conservation laws for integrable lattice models. Monatsh Math 196, 477–504 (2021). https://doi.org/10.1007/s00605-021-01529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-021-01529-5

Keywords

Mathematics Subject Classification

Navigation