Skip to main content
Log in

A new three-dimensional (3D) molecularly imprinted polymer fluoroprobe based on green–red dual-emission signals of carbon quantum dots and self-polymerization of dopamine (CDs@PDA-MIPs) for sensitive detection of nifedipine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nifedipine (NIF), as one of the dihydropyridine calcium channel blockers, is widely used in the treatment of hypertension. However, misuse or ingestion of NIF can result in serious health issues such as myocardial infarction, arrhythmia, stroke, and even death. It is essential to design a reliable and sensitive detection method to monitor NIF. In this work, an innovative molecularly imprinted polymer dual-emission fluorescent sensor (CDs@PDA-MIPs) strategy was successfully designed for sensitive detection of NIF. The fluorescent intensity of the probe decreased with increasing NIF concentration, showing a satisfactory linear relationship within the range 1.0 × 10−6 M ~ 5.0 × 10−3 M. The LOD of NIF was 9.38 × 10−7 M (S/N = 3) in fluorescence detection. The application of the CDs@PDA-MIPs in actual samples such as urine and Qiangli Dingxuan tablets has been verified, with recovery ranging from 97.8 to 102.8% for NIF. Therefore, the fluorescent probe demonstrates great potential as a sensing system for detecting NIF.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sakellari D, Vouros I D, Aristodemou E et al (2005) Tetracycline fibers as an adjunct in the treatment of nifedipine-induced gingival enlargement. J Periodont 76:1034–1039. https://doi.org/10.1902/jop.2005.76.6.1034

  2. Yamamoto H, Takayasu T, Nosaka M et al (2017) Fatal acute intoxication of accidentally ingested nifedipine in an infant - a case report. Leg Med (Tokyo) 24:12–18. https://doi.org/10.1016/j.legalmed.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  3. Fami MJ, Ho NT, Mason CM (1998) Another report of adverse reactions to immediate release nifedipine. Pharmacotherapy 18:1133–1135. https://doi.org/10.1002/j.1875-9114.1998.tb03945.x

    Article  CAS  PubMed  Google Scholar 

  4. Yuan Y, Chen N, Wang L et al (2022) Rapid detection of illegally added nifedipine in Chinese traditional patent medicine by surface-enhanced Raman spectroscopy. Anal Sci 38:359–368. https://doi.org/10.2116/analsci.21P148

    Article  CAS  PubMed  Google Scholar 

  5. Pan X, Zhou S, Fu Q et al (2013) Determination of nifedipine in dog plasma by high-performance liquid chromatography with tandem mass spectrometric detection. Biomed Chromatogr 28:1036–1040. https://doi.org/10.1002/bmc.3113

    Article  CAS  PubMed  Google Scholar 

  6. Sheng Y, Huang Z, Chen Y et al (2022) Facile high-quantum-yield sulfur-quantum-dot-based photoluminescent probe for nifedipine detection. Anal Bioanal Chem 414:7675–7681. https://doi.org/10.1007/s00216-022-04297-9

    Article  CAS  PubMed  Google Scholar 

  7. Peng J, Zhuge W, Huang Y et al (2019) UV-light photoelectrochemical sensor based on the copper tetraamino-phthalocyanine-modified ITO electrode for the detection of nifedipine in drugs and human serum. Bull Korean Chem Soc 40:214–219. https://doi.org/10.1002/bkcs.11667

    Article  CAS  Google Scholar 

  8. Babulal S M, Chen T W, Akilarasan M et al (2022) One-pot synthesis of hetero-structured binary metal oxide electrocatalyst for the potential detection of nifedipine in biological and environmental samples. Mater Today Chem 26. https://doi.org/10.1016/j.mtchem.2022.101132

  9. Rajendran S, UshaVipinachandran V, Badagoppam Haroon KH et al (2022) A comprehensive review on multi-colored emissive carbon dots as fluorescent probes for the detection of pharmaceutical drugs in water. Anal Methods 14:4263–4291. https://doi.org/10.1039/d2ay01288j

    Article  CAS  PubMed  Google Scholar 

  10. Ehtesabi H, Kalji SO (2024) Carbon nanomaterials for sweat-based sensors: a review. Mikrochim Acta 191:77. https://doi.org/10.1007/s00604-023-06162-7

    Article  CAS  PubMed  Google Scholar 

  11. Yan F, Hou Y, Yi C et al (2022) Carbon dots modified/prepared by supramolecular host molecules and their potential applications: a review. Anal Chim Acta 1232:340475. https://doi.org/10.1016/j.aca.2022.340475

    Article  CAS  PubMed  Google Scholar 

  12. Cui H, Yang J, Lu H et al (2022) Near-infrared carbon dots for cell imaging and detecting ciprofloxacin by label-free fluorescence sensor based on aptamer. Microchim Acta 189. https://doi.org/10.1007/s00604-022-05273-x

  13. Liu C, Lin X, Liao J et al (2024) Carbon dots-based dopamine sensors: recent advances and challenges. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2024.109598

    Article  Google Scholar 

  14. Zor E, Mollarasouli F, Karadurmus L et al (2024) Carbon dots in the detection of pathogenic bacteria and viruses. Crit Rev Anal Chem 54:219–246. https://doi.org/10.1080/10408347.2022.2072168

    Article  CAS  PubMed  Google Scholar 

  15. Munusamy S, Mandlimath TR, Swetha P et al (2023) Nitrogen-doped carbon dots: recent developments in its fluorescent sensor applications. Environ Res 231:116046. https://doi.org/10.1016/j.envres.2023.116046

    Article  CAS  PubMed  Google Scholar 

  16. Huang Q, Lin X, Chen D et al (2022) Carbon Dots/α-Fe2O3-Fe3O4 nanocomposite: efficient synthesis and application as a novel electrochemical aptasensor for the ultrasensitive determination of aflatoxin B1. Food Chem 373:131415. https://doi.org/10.1016/j.foodchem.2021.131415

    Article  CAS  PubMed  Google Scholar 

  17. Zhou X, Pang Y, Wang Y et al (2023) Colorimetric and fluorescence dual-mode pH sensor based on nitrogen-doped carbon dots and its diverse applications. Mikrochim Acta 190:478. https://doi.org/10.1007/s00604-023-06064-8

    Article  CAS  PubMed  Google Scholar 

  18. Huang X, Song J, Yung BC et al (2018) Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 47:2873–2920. https://doi.org/10.1039/c7cs00612h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cui H, Lu H, Yang J et al (2022) A significant fluorescent aptamer sensor based on carbon dots and graphene oxide for highly selective detection of progesterone. J Fluoresc 32:927–936. https://doi.org/10.1007/s10895-022-02896-4

    Article  CAS  PubMed  Google Scholar 

  20. Wen Y, Sun D, Zhang Y et al (2023) Molecular imprinting-based ratiometric fluorescence sensors for environmental and food analysis. Analyst 148:3971–3985. https://doi.org/10.1039/d3an00483j

    Article  CAS  PubMed  Google Scholar 

  21. He Y, Wang T, Cao J et al (2023) Molecular imprinting electrochemiluminescence sensor based on nitrogen-doped carbon quantum dots/Ru(bpy)3@SiO2 for the determination of citrinin. Mikrochim Acta 190:155. https://doi.org/10.1007/s00604-023-05735-w

    Article  CAS  PubMed  Google Scholar 

  22. Zhang T, Long D, Gu X et al (2022) A dual-recognition MIP-ECL sensor based on boric acid functional carbon dots for detection of dopamine. Mikrochim Acta 189:389. https://doi.org/10.1007/s00604-022-05483-3

    Article  CAS  PubMed  Google Scholar 

  23. Ranjbari S, Mohammadinejad A, Johnston T P et al (2023) Molecularly-imprinted polymers for the separation and detection of curcumin. Eur Polym J 189. https://doi.org/10.1016/j.eurpolymj.2023.111916

  24. Shi T, Liu T, Zhang J et al (2023) A test strip constructed by molecular imprinting for ratiometric fluorescence with ultra-low limit of detection for selective monitoring of Sudan I in chili powder. Microchim Acta 190:263. https://doi.org/10.1007/s00604-023-05825-9

    Article  CAS  Google Scholar 

  25. Nie Y, Liu Y, Su X et al (2019) Nitrogen-rich quantum dots-based fluorescence molecularly imprinted paper strip for p-nitroaniline detection. Microchem J 148:162–168. https://doi.org/10.1016/j.microc.2019.04.080

    Article  CAS  Google Scholar 

  26. Yan J, Fu Q, Zhang S et al (2022) A sensitive ratiometric fluorescent sensor based on carbon dots and CdTe quantum dots for visual detection of biogenic amines in food samples. Spectroc Acta Pt. A-Molec Biomolec Spectr. 282. https://doi.org/10.1016/j.saa.2022.121706

  27. Liu Y, Cao N, Gui W et al (2018) Nitrogen-doped graphene quantum dots-based fluorescence molecularly imprinted sensor for thiacloprid detection. Talanta 183:339–344. https://doi.org/10.1016/j.talanta.2018.01.063

    Article  CAS  PubMed  Google Scholar 

  28. Shao Y, Wang P, Zheng R et al (2023) Preparation of molecularly imprinted ratiometric fluorescence sensor for visual detection of tetrabromobisphenol A in water samples. Microchim Acta 190:161. https://doi.org/10.1007/s00604-023-05745-8

    Article  CAS  Google Scholar 

  29. Pan L, Sun S, Zhang L et al (2016) Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale 8:17350–17356. https://doi.org/10.1039/c6nr05878g

    Article  CAS  PubMed  Google Scholar 

  30. Pirot SM, Omer KM, Alshatteri AH et al (2023) Dual-template molecularly surface imprinted polymer on fluorescent metal-organic frameworks functionalized with carbon dots for ascorbic acid and uric acid detection. Spectrochim Acta A Mol Biomol Spectrosc 291:122340. https://doi.org/10.1016/j.saa.2023.122340

    Article  CAS  PubMed  Google Scholar 

  31. Bhogal S, Mohiuddin I, Kumar S et al (2022) Self-polymerized polydopamine-imprinted layer-coated carbon dots as a fluorescent sensor for selective and sensitive detection of 17β-oestradiol. Sci Total Environ 847. https://doi.org/10.1016/j.scitotenv.2022.157356

  32. Han L, Liu T, Cui D et al (2022) Quantitative detection of captopril in urine by smartphone-assisted ratiometric fluorescence sensing platform. Spectrochim Acta A Mol Biomol Spectrosc 280:121562. https://doi.org/10.1016/j.saa.2022.121562

    Article  CAS  PubMed  Google Scholar 

  33. Zhai X, Cao Y, Sun W et al (2022) Core-shell composite N-doped-Co-MOF@polydopamine decorated with Ag nanoparticles for nonenzymatic glucose sensors. J Electroanal Chem 918. https://doi.org/10.1016/j.jelechem.2022.116491

  34. Li J, Ma M, Zhang C et al (2020) Synthesis of a molecularly imprinted polymer using MOF-74(Ni) as matrix for selective recognition of lysozyme. Anal Bioanal Chem 412:7227–7236. https://doi.org/10.1007/s00216-020-02855-7

    Article  CAS  PubMed  Google Scholar 

  35. Gao P, Huang Z, Tan J et al (2022) Efficient conversion of elemental sulfur to robust ultrabright fluorescent sulfur quantum dots using sulfur-ethylenediamine precursor. Acs Sustainable Chem Eng 10:4634–4641. https://doi.org/10.1021/acssuschemeng.2c00036

    Article  CAS  Google Scholar 

  36. Qian S, Qiao L, Xu W et al (2019) An inner filter effect-based near-infrared probe for the ultrasensitive detection of tetracyclines and quinolones. Talanta 194:598–603. https://doi.org/10.1016/j.talanta.2018.10.097

    Article  CAS  PubMed  Google Scholar 

  37. Omer SOBA, K M, (2022) Selectivity enhancement for uric acid detection via in situ preparation of blue emissive carbon dots entrapped in chromium metal-organic frameworks. ACS Omega 7:16576–16583. https://doi.org/10.1021/acsomega.2c00790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang J, Liu H, Huang Y et al (2023) One-step hydrothermal synthesis of near-infrared emission carbon quantum dots as fluorescence aptamer sensor for cortisol sensing and imaging. Talanta 260. https://doi.org/10.1016/j.talanta.2023.124637

  39. Wang CX, Chen D, Yang YS et al (2021) Synthesis of multi-color fluorine and nitrogen co-doped graphene quantum dots for use in tetracycline detection, colorful solid fluorescent ink, and film. J Colloid Interface Sci 602:689–698. https://doi.org/10.1016/j.jcis.2021.06.062

    Article  CAS  PubMed  Google Scholar 

  40. Long P, Feng YY, Cao C et al (2018) Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv Funct Mater 28:10. https://doi.org/10.1002/adfm.201800791

    Article  CAS  Google Scholar 

  41. Yang S, Peng L, Sun DT et al (2019) A new post-synthetic polymerization strategy makes metal-organic frameworks more stable. Chem Sci 10:4542–4549. https://doi.org/10.1039/c9sc00135b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shahriyar SM, Lau-Cam CA (2000) A simple HPLC method with spectrophotometric detection for the simultaneous assay of nifedipine and verapamil in rat plasma. J Liq Chromatogr Relat Technol 23:1253–1265. https://doi.org/10.1081/jlc-100100412

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 22274096).

Author information

Authors and Affiliations

Authors

Contributions

Hao Liu: conceptualization; methodology; formal analysis; investigation; data curation; writing—original draft; writing—review and editing. Xuyuan Sun: resources. Zhengyuan Dai: resources. Ying Wang: resources. Li Li: supervision, writing—review and editing. Jie Fan: supervision, writing—review and editing. Yaping Ding: funding acquisition, supervision, writing—review and editing.

Corresponding authors

Correspondence to Li Li, Jie Fan or Yaping Ding.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2071 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Sun, X., Dai, Z. et al. A new three-dimensional (3D) molecularly imprinted polymer fluoroprobe based on green–red dual-emission signals of carbon quantum dots and self-polymerization of dopamine (CDs@PDA-MIPs) for sensitive detection of nifedipine. Microchim Acta 191, 332 (2024). https://doi.org/10.1007/s00604-024-06407-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06407-z

Keywords

Navigation