Skip to main content
Log in

Highly flexible copper tape decorated with Ag nanoarrays as ultrasensitive SERS platforms for multi-hazardous pollutant sensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly flexible and cost-effective copper tape decorated with silver nanoparticles (Cu-TAg) has been developed for surface-enhanced Raman spectroscopy (SERS) sensing of multi-hazardous environmental pollutants. Highly ordered and spherical-shaped silver nanoarrays have been fabricated using a low-cost thermal evaporation method. The structural, morphological, and optical properties of Cu-TAg sensors have been studied and correlated to the corresponding SERS performances. The size of nanoparticles has been successively tuned by varying the deposition time from 5 to 25 s. The nanoparticle sizes were enhanced with an increase in the evaporation time. SERS investigations have revealed that the sensing potential is subsequently improved with an increase in deposition time up to 10 s and then deteriorates with further increase in Ag deposition. The highest SERS activity was acquired for an optimum size of ~ 37 nm; further simulation studies confirmed this observation. Moreover, Cu-TAg sensors exhibited high sensitivity, reproducibility, and recycling characteristics to be used as excellent chemo-sensors. The lower detection limit estimation revealed that it can sense even in the pico-molar range for sensing of rhodamine 6G and methylene blue. The estimated enhancement factor of the sensor is found to be 9.4 × 107. Molecular-specific sensing of a wide range of pollutants such as rhodamine 6G, alizarin red, methylene blue, butylated hydroxy anisole, and penicillin–streptomycin is demonstrated with high efficiencies for micromolar spiked samples. Copper tape functionalized with Ag arrays thus demonstrated to be a promising candidate for low-cost and reusable chemo-sensors for environmental remediation applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ong TTX, Blanch EW, Jones OAH (2020) Surface enhanced Raman spectroscopy in environmental analysis, monitoring and assessment. Sci Total Environ 720:137601

    Article  CAS  PubMed  Google Scholar 

  2. Xu H, Jia Y, Sun Z et al (2022) Environmental pollution, a hidden culprit for health issues. Eco-Environment Heal 1:31–45. https://doi.org/10.1016/j.eehl.2022.04.003

    Article  Google Scholar 

  3. Ismail M, Akhtar K, Khan MI et al (2019) Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr Pharm Des 25:3645–3663

    Article  CAS  PubMed  Google Scholar 

  4. Khalid M, Abdollahi M (2021) Environmental distribution of personal care products and their effects on human health. Iran J Pharm Res IJPR 20:e124466. https://doi.org/10.22037/ijpr.2021.114891.15088

  5. Koyuncu H, Kul AR (2020) Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent. Appl Water Sci 10:72. https://doi.org/10.1007/s13201-020-1156-9

  6. Mijinyawa AH, Durga G, Mishra A (2019) A sustainable process for adsorptive removal of methylene blue onto a food grade mucilage: kinetics, thermodynamics, and equilibrium evaluation. Int J Phytoremediation 21:1122–1129. https://doi.org/10.1080/15226514.2019.1606785

    Article  CAS  PubMed  Google Scholar 

  7. Hammouche J, Daoudi K, Columbus S et al (2021) Structural and morphological optimization of Ni doped ZnO decorated silicon nanowires for photocatalytic degradation of methylene blue. Inorg Chem Commun 131:108763. https://doi.org/10.1016/j.inoche.2021.108763

    Article  CAS  Google Scholar 

  8. Wang N, Wang N, Qi D et al (2023) Comprehensive overview of antibiotic distribution, risk and priority: a study of large-scale drinking water sources from the lower Yangtze River. J Environ Manage 344:118705. https://doi.org/10.1016/j.jenvman.2023.118705

    Article  CAS  PubMed  Google Scholar 

  9. Baskaran X, Geo Vigila A, Zhang S et al (2018) A review of the use of pteridophytes for treating human ailments. J Zhejiang Univ B 19:85–119. https://doi.org/10.1631/jzus.B1600344

    Article  CAS  Google Scholar 

  10. Hassan SN, Ahmad F (2020) The relevance of antibiotic supplements in mammalian cell cultures: towards a paradigm shift. Gulhane Med J 62:224–230. https://doi.org/10.4274/gulhane.galenos.2020.871

    Article  Google Scholar 

  11. Patangia DV, Anthony Ryan C, Dempsey E et al (2022) Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 11:e1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Silva MM, Reboredo FH, Lidon FC (2022) Food colour additives: a synoptical overview on their chemical properties, applications in food products, and health side effects. Foods 11(3):379. https://doi.org/10.3390/foods11030379

  13. Xu X, Liu A, Hu S et al (2021) Synthetic phenolic antioxidants: metabolism, hazards and mechanism of action. Food Chem 353:129488. https://doi.org/10.1016/j.foodchem.2021.129488

    Article  CAS  PubMed  Google Scholar 

  14. Park J, Thomasson JA, Gale CC et al (2020) Adsorbent-SERS technique for determination of plant VOCs from live cotton plants and dried teas. ACS Omega 5:2779–2790. https://doi.org/10.1021/acsomega.9b03500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mogha NK, Shin D (2023) Nanoplastic detection with surface enhanced Raman spectroscopy: present and future. TrAC Trends Anal Chem 158:116885. https://doi.org/10.1016/j.trac.2022.116885

    Article  CAS  Google Scholar 

  16. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  17. Tamer U, Torul H, Doğan Ü et al (2021) SERS sensor applications in environmental analysis and biotechnology BT - nanotechnology applications in health and environmental sciences. In: Korkusuz F, Prasad R (eds) Saglam N. Springer International Publishing, Cham, pp 197–236

    Google Scholar 

  18. Xu M-L, Gao Y, Han X-X, Zhao B (2022) Innovative application of SERS in food quality and safety: a brief review of recent trends. Foods 11(14):2097. https://doi.org/10.3390/foods11142097

  19. Zhang D, Pu H, Huang L, Sun D-W (2021) Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: fundamentals and recent applications. Trends Food Sci Technol 109:690–701. https://doi.org/10.1016/j.tifs.2021.01.058

    Article  CAS  Google Scholar 

  20. Li D, Zhu Z, Sun D-W (2020) Visualization of the in situ distribution of contents and hydrogen bonding states of cellular level water in apple tissues by confocal Raman microscopy. Analyst 145:897–907. https://doi.org/10.1039/C9AN01743G

    Article  CAS  PubMed  Google Scholar 

  21. Daoudi K, Columbus S, Falcão BP et al (2023) Label-free DNA detection using silver nanoprism decorated silicon nanoparticles: effect of silicon nanoparticle size and doping levels. Spectrochim Acta Part A Mol Biomol Spectrosc 290:122262. https://doi.org/10.1016/j.saa.2022.122262

    Article  CAS  Google Scholar 

  22. Li J, Zhu X, Yang D (2018) Evaporation time effects on structural, optical and X-ray photoresponse properties of thermal evaporated a-Se thin films at low vacuum degree. AIP Adv 8:95304. https://doi.org/10.1063/1.5047832

    Article  CAS  Google Scholar 

  23. Lachebi I, Fedala A, Djenizian T et al (2018) Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates. Surf Coatings Technol 343:160–165. https://doi.org/10.1016/j.surfcoat.2017.09.061

    Article  CAS  Google Scholar 

  24. Chandu B, Sree Satya Bharati M, Albrycht P, Rao SV (2020) Fabrication of nanocages on nickel using femtosecond laser ablation and trace level detection of malachite green and Nile blue dyes using surface enhanced Raman spectroscopic technique. Opt Laser Technol 131:106454. https://doi.org/10.1016/j.optlastec.2020.106454

    Article  CAS  Google Scholar 

  25. Chen P-J, Hsueh C-H (2021) Imprintable Au-based thin-film metallic glasses with different crystallinities for surface-enhanced Raman scattering. J Phys Chem C 125:23983–23990. https://doi.org/10.1021/acs.jpcc.1c07842

    Article  CAS  Google Scholar 

  26. Shameer PM, Vijai Anand K, Columbus S et al (2023) Highly efficient, multiplexed SERS sensing of para-aminobenzoic acid using reusable silver nanoarrays for environmental monitoring. Mater Sci Eng B 295:116576. https://doi.org/10.1016/j.mseb.2023.116576

    Article  CAS  Google Scholar 

  27. Pál P, Bonyár A, Veres M et al (2021) An investigation of surface-enhanced Raman scattering of different analytes adsorbed on gold nanoislands. Appl Sci 11(21):9838. https://doi.org/10.3390/app11219838

  28. de Barros A, Shimizu FM, de Oliveira CS et al (2020) Dynamic behavior of surface-enhanced Raman spectra for rhodamine 6G interacting with gold nanorods: implication for analyses under wet versus dry conditions. ACS Appl Nano Mater 3:8138–8147. https://doi.org/10.1021/acsanm.0c01530

    Article  CAS  Google Scholar 

  29. de Sousa F, Junior J, Columbus S, Hammouche J et al (2023) Engineered micro-pyramids functionalized with silver nanoarrays as excellent cost-effective SERS chemosensors for multi-hazardous pollutants detection. Appl Surf Sci 613:156092. https://doi.org/10.1016/j.apsusc.2022.156092

    Article  CAS  Google Scholar 

  30. Bell SEJ, Charron G, Cortés E et al (2020) Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice. Angew Chemie Int Ed 59:5454–5462. https://doi.org/10.1002/anie.201908154

    Article  CAS  Google Scholar 

  31. He RX, Liang R, Peng P, Norman Zhou Y (2017) Effect of the size of silver nanoparticles on SERS signal enhancement. J Nanoparticle Res 19:267. https://doi.org/10.1007/s11051-017-3953-0

    Article  CAS  Google Scholar 

  32. Hussain N, Pu H, Sun D-W (2021) Core size optimized silver coated gold nanoparticles for rapid screening of tricyclazole and thiram residues in pear extracts using SERS. Food Chem 350:129025. https://doi.org/10.1016/j.foodchem.2021.129025

    Article  CAS  PubMed  Google Scholar 

  33. Darienzo RE, Chen O, Sullivan M et al (2020) Au nanoparticles for SERS: temperature-controlled nanoparticle morphologies and their Raman enhancing properties. Mater Chem Phys 240:122143. https://doi.org/10.1016/j.matchemphys.2019.122143

    Article  CAS  PubMed  Google Scholar 

  34. Sivaprakasam V, Hart MB (2021) Surface-enhanced raman spectroscopy for environmental monitoring of aerosols. ACS Omega 6:10150–10159. https://doi.org/10.1021/acsomega.1c00207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pilot R, Signorini R, Durante C et al (2019) A review on surface-enhanced Raman scattering. Biosens 9. https://doi.org/10.3390/bios9020057

  36. Daoudi K, Gaidi M, Columbus S et al (2022) Hierarchically assembled silver nanoprism-graphene oxide-silicon nanowire arrays for ultrasensitive surface enhanced Raman spectroscopy sensing of atrazine. Mater Sci Semicond Process 138:106288. https://doi.org/10.1016/j.mssp.2021.106288

    Article  CAS  Google Scholar 

  37. Liu Y-Q, He Z-H, Ma C et al (2023) A self-cleaning SERS substrate based on flower-like Au@MoS2/Ag NPs with photocatalytic ability. Vib Spectrosc 126:103542. https://doi.org/10.1016/j.vibspec.2023.103542

    Article  CAS  Google Scholar 

  38. Peng G-Z, Hardiansyah A, Lin H-T et al (2022) Photocatalytic degradation and reusable SERS detection by Ag nanoparticles immobilized on g-C3N4/graphene oxide nanosheets. Surf Coatings Technol 435:128212. https://doi.org/10.1016/j.surfcoat.2022.128212

    Article  CAS  Google Scholar 

  39. Syu W-L, Lin Y-H, Paliwal A et al (2018) Highly sensitive and reproducible SERS substrates of bilayer Au and Ag nano-island arrays by thermal evaporation deposition. Surf Coatings Technol 350:823–830. https://doi.org/10.1016/j.surfcoat.2018.04.043

    Article  CAS  Google Scholar 

  40. Sun G, Ye G, Wang K et al (2020) Deposition of Ag films on liquid substrates via thermal evaporation for surface-enhanced Raman scattering. ACS Omega 5:7440–7445. https://doi.org/10.1021/acsomega.0c00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin J, Lan H, Zheng W et al (2012) Silver nanoparticles films deposited on AAO templates by thermal evaporation for surface-enhanced Raman scattering of R6G. NANO 07:1250048. https://doi.org/10.1142/S1793292012500488

    Article  CAS  Google Scholar 

  42. Chang Y-C, Lu Y-C, Hung Y-J (2019) Controlling the nanoscale gaps on silver island film for efficient surface-enhanced raman spectroscopy. Nanomater 9(3):470. https://doi.org/10.3390/nano9030470

  43. Yao W, Sun Y, Xie Y et al (2011) Development and evaluation of a surface-enhanced Raman scattering (SERS) method for the detection of the antioxidant butylated hydroxyanisole. Eur Food Res Technol 233:835–840. https://doi.org/10.1007/s00217-011-1576-8

    Article  CAS  Google Scholar 

  44. Zhang Q, Liu Z, Duan L et al (2023) Ultrasensitive determination of lipid soluble antioxidants in food products using silver nano-tripod SERS substrates. Appl Surf Sci 611:155577. https://doi.org/10.1016/j.apsusc.2022.155577

    Article  CAS  Google Scholar 

  45. Chu H, Sun X, Zha X et al (2022) Ultrasensitive electrochemical detection of butylated hydroxy anisole via metalloporphyrin covalent organic frameworks possessing variable catalytic active sites. Biosens 12(11):975. https://doi.org/10.3390/bios12110975

Download references

Acknowledgements

The authors wish to thank Dr. T. R. Ravindran, Head, Light Scattering Studies Section, Materials Science Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603 102, Tamil Nadu, India, for his valuable guidance and constant support for this research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, and writing—original draft preparation: Mohamed Shameer; supervision, writing—review, and editing: Kabali Vijai Anand; methodology, formal analysis, and writing—review: Soumya Columbus; writing—review and editing: Hussain Alawadhi; writing—review and editing: Kais Daoudi; writing—review and editing: Mounir Gaidi; writing—review and editing: Kasivelu Govindaraju.

Corresponding author

Correspondence to Kabali Vijai Anand.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 368 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shameer, M., Anand, K.V., Columbus, S. et al. Highly flexible copper tape decorated with Ag nanoarrays as ultrasensitive SERS platforms for multi-hazardous pollutant sensing. Microchim Acta 191, 193 (2024). https://doi.org/10.1007/s00604-024-06276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06276-6

Keywords

Navigation