Skip to main content

Advertisement

Log in

A non-residue surface modification strategy for active-targeting fluorescent silica nanoparticles to cellular organelles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Silica nanoparticles (SiNPs) with a chemically modified surface typically have a complicated chemical composition, which can significantly differ from their intended design. In this study, we systematically studied the effects of two surface modification methods on active-targeting of intracellular organelles of SiNPs: (1) the widely used step-by-step approach, which involves modifying SiNPs in two steps, i.e., the outer surface of SiNPs was firstly modified with amino groups and then these amino groups were linked with targeting groups, and (2) a newly developed one-step approach in which the ligand–silane complex is initially synthesized, followed by chemically immobilizing the complex on the surface of SiNPs. In the one-step approach, the molar ratio of reactants was precisely tuned so that there are no reactive groups left on the outer surface of SiNPs. Two essential organelles, mitochondria and the nucleus, were selected to compare the targeting performances of SiNPs synthesized via these two approaches. By characterizing physicochemical properties, including structural properties, the number of amino groups, surface charge, polydispersity, and cell colocalization, we demonstrated that SiNPs synthesized via the one-step approach with no residual linkage groups on their surface showed significantly improved mitochondria- and nucleus-targeting performances. This precise control of surface properties allows for optimized biological behavior and active-targeting efficiency of SiNPs. We anticipate that such simple and efficient synthetic strategies will enable the synthesis of effective SiNPs for active-targeting organelles in various biological applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in the supplementary information of this article. Data available on request.

References

  1. Saminathan A, Zajac M, Anees P, Krishnan Y (2021) Organelle-level precision with next-generation targeting technologies. Nat Rev Mater 7:355–371. https://doi.org/10.1038/s41578-021-00396-8

    Article  Google Scholar 

  2. Guo X, Wei X, Chen Z, Zhang X, Yang G, Zhou S (2020) Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog Mater Sci 107:100599. https://doi.org/10.1016/j.pmatsci.2019.100599

    Article  CAS  Google Scholar 

  3. Roy SM, Barman S, Basu A, Ghatak T, Pore SK, Ghosh SK, Mukherjee R, Maity AR (2022) Amine as a bottom-line functionality on dds surface for efficient endosomal escape and further subcellular targets. J Drug Delivery Sci Technol 71:103303. https://doi.org/10.1016/j.jddst.2022.103303

    Article  CAS  Google Scholar 

  4. Yang B, Chen Y, Shi J (2019) Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Mater Sci Eng R Rep 137:66–105. https://doi.org/10.1016/j.mser.2019.01.001

    Article  Google Scholar 

  5. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074. https://doi.org/10.1021/cr300143v

    Article  CAS  PubMed  Google Scholar 

  6. Liberman A, Mendez N, Trogler WC, Kummel AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69:132–158. https://doi.org/10.1016/j.surfrep.2014.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Erstling JA, Naguib N, Hinckley JA, Lee R, Feuer GB, Tallman JF, Tsaur L, Tang D, Wiesner UB (2023) Antibody functionalization of ultrasmall fluorescent core–shell aluminosilicate nanoparticle probes for advanced intracellular labeling and optical super resolution microscopy. Chem Mater 35:1047–1061. https://doi.org/10.1021/acs.chemmater.2c02963

    Article  CAS  Google Scholar 

  8. Maity AR, Stepensky D (2015) Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies. Int J Pharm 496:268–274. https://doi.org/10.1016/j.ijpharm.2015.10.053

    Article  CAS  PubMed  Google Scholar 

  9. Liu D, He X, Wang K, He C, Shi H, Jian L (2010) Biocompatible silica nanoparticles−insulin conjugates for mesenchymal stem cell adipogenic differentiation. Bioconjugate Chem 21:1673–1684. https://doi.org/10.1021/bc100177v

    Article  CAS  Google Scholar 

  10. Maity AR, Stepensky D (2016) Limited efficiency of drug delivery to specific intracellular organelles using subcellularly “targeted” drug delivery systems. Mol Pharm 13:1–7. https://doi.org/10.1021/acs.molpharmaceut.5b00697

    Article  CAS  PubMed  Google Scholar 

  11. Qu Q, Ma X, Zhao Y (2015) Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale 7:16677–16686. https://doi.org/10.1039/c5nr05139h

    Article  CAS  PubMed  Google Scholar 

  12. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J (2012) Nuclear-targeted drug delivery of tat peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134:5722–5725. https://doi.org/10.1021/ja211035w

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Y, Zhang Z, Pan Z, Liu Y (2021) Advanced bioactive nanomaterials for biomedical applications. Exploration 1: https://doi.org/10.1002/exp.20210089

  14. Estevao BM, Miletto I, Hioka N, Marchese L, Gianotti E (2021) Mesoporous silica nanoparticles functionalized with amino groups for biomedical applications. ChemistryOpen 10:1251–1259. https://doi.org/10.1002/open.202100227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun Y, Kunc F, Balhara V, Coleman B, Kodra O, Raza M, Chen M, Brinkmann A, Lopinski GP, Johnston LJ (2019) Quantification of amine functional groups on silica nanoparticles: a multi-method approach. Nanoscale Adv 1:1598–1607. https://doi.org/10.1039/c9na00016j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barabanova AI, Pryakhina TA, Afanas’ev ES, Zavin BG, Vygodskii YS, Askadskii AA, Philippova OE, Khokhlov AR (2012) Anhydride modified silica nanoparticles: preparation and characterization. Appl Surf Sci 258:3168–3172. https://doi.org/10.1016/j.apsusc.2011.11.057

    Article  CAS  Google Scholar 

  17. Maity AR, Stepensky D (2017) Nuclear and perinuclear targeting efficiency of quantum dots depends on density of peptidic targeting residues on their surface. J Control Release 257:32–39. https://doi.org/10.1016/j.jconrel.2016.12.031

    Article  CAS  PubMed  Google Scholar 

  18. Yao L, Xu G, Dou W, Bai Y (2008) The control of size and morphology of nanosized silica in triton x–100 based reverse micelle. Colloids Surf A 316:8–14. https://doi.org/10.1016/j.colsurfa.2007.08.016

    Article  CAS  Google Scholar 

  19. Hartlen KD, Athanasopoulos AP, Kitaev V (2008) Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 24:1714–1720. https://doi.org/10.1021/la7025285

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Chen F, Sun L, Zhang Z, Chang S, Zhang J, Tian B (2023) Influences of molecular structures on the spectral properties and photostability of rhodamine dyes. Res Chem Intermed 49:2417–2432. https://doi.org/10.1007/s11164-023-05016-4

    Article  CAS  Google Scholar 

  21. Ning P, Wang W, Chen M, Feng Y, Meng X (2017) Recent advances in mitochondria- and lysosomes-targeted small-molecule two-photon fluorescent probes. Chin Chem Lett 28:1943–1951. https://doi.org/10.1016/j.cclet.2017.09.026

    Article  CAS  Google Scholar 

  22. Huang H, Dong F, Tian Y (2016) Mitochondria-targeted ratiometric fluorescent nanosensor for simultaneous biosensing and imaging of o2•– and ph in live cells. Anal Chem 88:12294–12302. https://doi.org/10.1021/acs.analchem.6b03470

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Zhang Y (2011) Fluorescent quantification of amino groups on silica nanoparticle surfaces. Anal Bioanal Chem 399:2503–2509. https://doi.org/10.1007/s00216-010-4622-7

    Article  CAS  PubMed  Google Scholar 

  24. Zhang W, Abou El-Reash YG, Ding L, Lin Z, Lian Y, Song B, Yuan J, Wang X-d (2018) A lysosome-targeting nanosensor for simultaneous fluorometric imaging of intracellular ph values and temperature. Microchim Acta 185:533. https://doi.org/10.1007/s00604-018-3040-y

    Article  CAS  Google Scholar 

  25. Gao G, Jiang Y-W, Jia H-R, Sun W, Guo Y, Yu X-W, Liu X, Wu F-G (2019) From perinuclear to intranuclear localization: A cell-penetrating peptide modification strategy to modulate cancer cell migration under mild laser irradiation and improve photothermal therapeutic performance. Biomaterials 223:119443. https://doi.org/10.1016/j.biomaterials.2019.119443

    Article  CAS  PubMed  Google Scholar 

  26. Faustino RS, Nelson TJ, Terzic A, Perez-Terzic C (2007) Nuclear transport: target for therapy. Clin Pharmacol Ther 81:880–886. https://doi.org/10.1038/sj.clpt.6100141

    Article  CAS  PubMed  Google Scholar 

  27. Guo X, Wang L, Duval K, Fan J, Zhou S, Chen Z (2017) Dimeric drug polymeric micelles with acid-active tumor targeting and fret-traceable drug release. Adv Mater 30:1705436. https://doi.org/10.1002/adma.201705436

    Article  CAS  Google Scholar 

  28. Huang W, Wu X, Gao X, Yu Y, Lei H, Zhu Z, Shi Y, Chen Y, Qin M, Wang W, Cao Y (2019) Maleimide–thiol adducts stabilized through stretching. Nat Chem 11:310–319. https://doi.org/10.1038/s41557-018-0209-2

    Article  CAS  PubMed  Google Scholar 

  29. Lin K, Lin Z, Li Y, Zheng Y, Zhang D (2019) Ultrasound-induced reactive oxygen species generation and mitochondria-specific damage by sonodynamic agent/metal ion-doped mesoporous silica. RSC Adv 9:39924–39931. https://doi.org/10.1039/c9ra08142a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pan W, Wang H, Yang L, Yu Z, Li N, Tang B (2016) Ratiometric fluorescence nanoprobes for subcellular ph imaging with a single-wavelength excitation in living cells. Anal Chem 88:6743–6748. https://doi.org/10.1021/acs.analchem.6b01010

    Article  CAS  PubMed  Google Scholar 

  31. Dong P, Hu J, Yu S, Zhou Y, Shi T, Zhao Y, Wang X, Liu X (2021) A mitochondrial oxidative stress amplifier to overcome hypoxia resistance for enhanced photodynamic therapy. Small Methods 5:2100581. https://doi.org/10.1002/smtd.202100581

    Article  CAS  Google Scholar 

  32. Du Y, Zhang P, Liu W, Tian J (2022) Optical imaging of epigenetic modifications in cancer: A systematic review. Phenomics 2:88–101. https://doi.org/10.1007/s43657-021-00041-y

    Article  PubMed  PubMed Central  Google Scholar 

  33. Qu Q, Ma X, Zhao Y (2016) Anticancer effect of α-tocopheryl succinate delivered by mitochondria-targeted mesoporous silica nanoparticles. ACS Appl Mater Interfaces 8:34261–34269. https://doi.org/10.1021/acsami.6b13974

    Article  CAS  PubMed  Google Scholar 

  34. Pan L, Liu J, He Q, Wang L, Shi J (2013) Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using tat-conjugated mesoporous silica nanoparticles. Biomaterials 34:2719–2730. https://doi.org/10.1016/j.biomaterials.2012.12.040

    Article  CAS  PubMed  Google Scholar 

  35. Pan L, Liu J, He Q, Shi J (2014) Msn-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv Mater 26:6742–6748. https://doi.org/10.1002/adma.201402752

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by the National Natural Science Foundation of China (No. 22274031), National Key R&D Program of China (2022YFC3400700), and Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maosheng Zhang or Xu-dong Wang.

Ethics declarations

Ethics approval

This research did not involve human or animal samples.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.86 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, X., Zheng, Q. et al. A non-residue surface modification strategy for active-targeting fluorescent silica nanoparticles to cellular organelles. Microchim Acta 191, 181 (2024). https://doi.org/10.1007/s00604-024-06239-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06239-x

Keywords

Navigation