Skip to main content
Log in

Fe3O4@nitrogen-doped carbon core-double shell nanotubes as a novel and efficient nanosorbent for ultrasonic assisted dispersive magnetic solid phase extraction of heterocyclic pesticides from environmental soil and water samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Fe3O4@nitrogen-doped carbon core-double shell nanotubes (Fe3O4@N-C C-DSNTs) were successfully synthesized and applied as a novel nanosorbent in ultrasonic assisted dispersive magnetic solid phase extraction (UA-DMSPE) of tribenuron-methyl, fenpyroximate, and iprodione. Subsequently, corona discharge ion mobility spectrometry (CD-IMS) was employed for the detection of the extracted analytes. Effective parameters on the extraction recovery percentage (ER%) were systematically investigated and optimized. Under optimal conditions, UA-DMSPE-CD-IMS demonstrated remarkable linearity in different ranges within 1.0 – 700 ng mL−1 with correlation coefficients exceeding 0.993, repeatability values below 6.9%, limits of detection ranging from 0.30 to 0.90 ng mL−1, high preconcentration factors (418 - 435), and ER% values (83 – 87%). The potential of the proposed method was further demonstrated by effectively determining the targeted pesticides in various environmental soil and water samples, exhibiting relative recoveries in the range 92.1 – 102%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. eg A, no u, ro a et al (2023) Widespread use of toxic agrochemicals and pesticides for agricultural products storage in africa and developing countries: possible panacea for ecotoxicology and health implications. Heliyon 9:e15173. https://doi.org/10.1016/j.heliyon.2023.e15173

    Article  CAS  Google Scholar 

  2. Cancino J, Soto K, Tapia J et al (2023) Occupational exposure to pesticides and symptoms of depression in agricultural workers. a systematic review. Environ Res 231:116190. https://doi.org/10.1016/j.envres.2023.116190

    Article  CAS  PubMed  Google Scholar 

  3. Utembe W, kamng’ona Aw (2021) Gut microbiota-mediated pesticide toxicity in humans: methodological issues and challenges in the risk assessment of pesticides. Chemosphere 271:129817. https://doi.org/10.1016/j.chemosphere.2021.129817

  4. Xi N, Li Y, Xia X (2022) A review of pesticide phototransformation on the leaf surface: models, mechanism, and influencing factors. Chemosphere 308:136260. https://doi.org/10.1016/j.chemosphere.2022.136260

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Srivani K, Radhika V, Laxminarayana E, Haripriya S (2018) A review on hetrocyclic compounds in synthetic, agricultural and industrial applications. Indian J Public Heal Res Dev 9:717–721. https://doi.org/10.5958/0976-5506.2018.01544.9

    Article  Google Scholar 

  6. Huijbregts MAJ, Rombouts LJA, Ragas AM, van de Meent D (2005) Human-toxicological effect and damage factors of carcinogenic and noncarcinogenic chemicals for life cycle impact assessment. Integr Environ Assess Manag 1:181–244. https://doi.org/10.1897/2004-007R.1

    Article  CAS  PubMed  Google Scholar 

  7. Sanz-Medel A, Fairman B (1992) Aluminium speciation: clinical and environmental aspects. Mikrochim Acta 109:157–160. https://doi.org/10.1007/bf01243230/metrics

    Article  CAS  Google Scholar 

  8. Yx G, Tc Y, Zx Y et al (2022) Recent developments and applications in the microextraction and separation technology of harmful substances in a complex matrix. Microchem J 176:107241. https://doi.org/10.1016/j.microc.2022.107241

    Article  CAS  Google Scholar 

  9. Bagheri A, Behbahani M, Mm A et al (2012) Preconcentration and separation of ultra-trace palladium ion using pyridine-functionalized magnetic nanoparticles. Microchim Acta 178:261–268. https://doi.org/10.1007/s00604-012-0815-4/metrics

    Article  CAS  Google Scholar 

  10. Ma J, Wu G, Li S et al (2018) Magnetic solid-phase extraction of heterocyclic pesticides in environmental water samples using metal-organic frameworks coupled to high performance liquid chromatography determination. J Chromatogr A 1553:57–66. https://doi.org/10.1016/j.chroma.2018.04.034

    Article  CAS  PubMed  Google Scholar 

  11. Wu X, Li X, Yang M et al (2017) An ionic liquid-based nanofluid of titanium dioxide nanoparticles for effervescence-assisted dispersive liquid–liquid extraction for acaricide detection. J Chromatogr A 1497:1–8. https://doi.org/10.1016/j.chroma.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  12. Bitar M, Lafarge C, Sok N et al (2019) Molecularly imprinted sol-gel polymers for the analysis of iprodione fungicide in wine: synthesis in green solvent. Food Chem 293:226–232. https://doi.org/10.1016/j.foodchem.2019.04.108

    Article  CAS  PubMed  Google Scholar 

  13. Aladaghlo Z, Ar F, Si A, Dabiri M (2020) A mesoporous nanosorbent composed of silica, graphene, and palladium (ii) for ultrasound-assisted dispersive solid-phase extraction of organophosphorus pesticides prior to their quantitation by ion mobility spectrometry. Microchim Acta 187:209. https://doi.org/10.1007/s00604-020-4174-2

    Article  CAS  Google Scholar 

  14. Aladaghlo Z, Ar F, Si A, Dabiri M (2019) Ultrasound assisted dispersive solid phase extraction of triazole fungicides by using an n-heterocyclic carbene copper complex supported on ionic liquid-modified graphene oxide as a sorbent. Microchim Acta 186. https://doi.org/10.1007/s00604-019-3276-1

  15. Aladaghlo Z, Ar F, Si A, Dabiri M (2019) Ultrasound assisted dispersive solid phase extraction of triazole fungicides by using an n-heterocyclic carbene copper complex supported on ionic liquid-modified graphene oxide as a sorbent. Microchim Acta 2:2–9. https://doi.org/10.1007/s00604-019-3276-1

    Article  CAS  Google Scholar 

  16. Aladaghlo Z, Fakhari A, Behbahani M (2016) Solvent-assisted dispersive solid-phase extraction: a sample preparation method for trace detection of diazinon in urine and environmental water samples. J Chromatogr A 1462:27–34. https://doi.org/10.1016/j.chroma.2016.07.084

    Article  CAS  PubMed  Google Scholar 

  17. Aladaghlo Z, Fakhari A, Behbahani M (2016) Efficient sample preparation method based on solvent-assisted dispersive solid-phase extraction for the trace detection of butachlor in urine and waste water samples. J Sep Sci 39:3798–3805. https://doi.org/10.1002/jssc.201600735

    Article  CAS  PubMed  Google Scholar 

  18. Zhang C, Xing H, Yang L et al (2022) Development trend and prospect of solid phase extraction technology. Chinese J Chem Eng 42:245–255. https://doi.org/10.1016/j.cjche.2021.05.031

    Article  CAS  Google Scholar 

  19. Hl J, Li N, Cui L et al (2019) Recent application of magnetic solid phase extraction for food safety analysis. Trac Trends Anal Chem 120:115632. https://doi.org/10.1016/j.trac.2019.115632

    Article  CAS  Google Scholar 

  20. Sheykhan M, Aladaghlo Z, Javanbakht S et al (2023) Carbon nanotubes/metal-organic framework based magnetic dispersive micro-solid phase extraction for the determination of triazole fungicides in wastewater and soil samples. Microchem J 193:109149. https://doi.org/10.1016/j.microc.2023.109149

    Article  CAS  Google Scholar 

  21. Behbahani M, Hs A, Salarian M et al (2014) Synthesis and application of a thermosensitive tri-block copolymer as an efficient sample treatment technique for preconcentration and ultra-trace detection of lead ions. Microchim Acta 181:129–137. https://doi.org/10.1007/s00604-013-1079-3/metrics

    Article  CAS  Google Scholar 

  22. Aladaghlo Z, Fakhari AR (2019) Development of a new solvent-assisted dispersive solid-phase extraction followed by ion mobility spectrometry for trace determination of organophosphorus pesticides in environmental water samples. Sep Sci Plus Sscp:201900031. https://doi.org/10.1002/sscp.201900031

  23. Shahsavani A, Aladaghlo Z, Fakhari AR (2023) Dispersive magnetic solid phase extraction of triazole fungicides based on polybenzidine/magnetic nanoparticles in environmental samples. Microchim Acta 190:1–10. https://doi.org/10.1007/s00604-023-05948-z/metrics

    Article  Google Scholar 

  24. Behbahani M, Bagheri S, Omidi F, Amini MM (2018) An amino-functionalized mesoporous silica (kit-6) as a sorbent for dispersive and ultrasonication-assisted micro solid phase extraction of hippuric acid and methylhippuric acid, two biomarkers for toluene and xylene exposure. Microchim Acta 185:1–8. https://doi.org/10.1007/s00604-018-3038-5/metrics

    Article  CAS  Google Scholar 

  25. Aladaghlo Z, Javanbakht S, Sahragard A et al (2023) Cellulose-based nanocomposite for ultrasonic assisted dispersive solid phase microextraction of triazole fungicides from water, fruits, and vegetables samples. Food Chem 403:134273. https://doi.org/10.1016/j.foodchem.2022.134273

    Article  CAS  PubMed  Google Scholar 

  26. Aladaghlo Z, Ar F, Shaabani A (2022) magnetic mwcnt@guanidine acetic acid@cu as a nanosorbent for ultrasonic assisted dispersive magnetic solid phase extraction of heterocyclic pesticides in citrus samples. J Iran Chem Soc 19:1437–1444. https://doi.org/10.1007/s13738-021-02390-x/metrics

    Article  CAS  Google Scholar 

  27. Ma J, Yao Z, Hou L et al (2016) Metal organic frameworks (mofs) for magnetic solid-phase extraction of pyrazole/pyrrole pesticides in environmental water samples followed by hplc-dad determination. Talanta 161:686–692. https://doi.org/10.1016/j.talanta.2016.09.035

    Article  CAS  PubMed  Google Scholar 

  28. Yang X, Qiao K, Liu F et al (2017) Magnetic mixed hemimicelles dispersive solid-phase extraction based on ionic liquid-coated attapulgite/polyaniline-polypyrrole/fe3o4 nanocomposites for determination of acaricides in fruit juice prior to high-performance liquid chromatography-diode array detection. Talanta 166:93–100. https://doi.org/10.1016/j.talanta.2017.01.051

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Li R, Yang B (2020) Carbon dots: a new type of carbon-based nanomaterial with wide applications. Acs Cent Sci 6:2179–2195. https://doi.org/10.1021/acscentsci.0c01306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iy J, Hj N, Baek JB (2020) Nitrogen-doped carbon nanomaterials: synthesis, characteristics and applications. Chem – An Asian J 15:2282–2293. https://doi.org/10.1002/asia.201901318

    Article  CAS  Google Scholar 

  31. Deng Y, Xie Y, Zou K, Ji X (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4:1144–1173. https://doi.org/10.1039/c5ta08620e

    Article  CAS  Google Scholar 

  32. Titirici M-M, Antonietti M (2010) Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev 39:103–116. https://doi.org/10.1039/b819318p

    Article  CAS  PubMed  Google Scholar 

  33. Ls P, Ks S, Saha SK et al (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv mater 21:4726–4730. https://doi.org/10.1002/adma.200901285

    Article  CAS  Google Scholar 

  34. Jia C-J, Sun L-D, Luo F et al (2008) Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J Am Chem Soc 130:16968–16977. https://doi.org/10.1021/ja805152t

    Article  CAS  PubMed  Google Scholar 

  35. Liu R, Guo Y, Odusote G et al (2013) Core–shell fe3o4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent. Acs Appl Mater Interfaces 5:9167–9171. https://doi.org/10.1021/am402585y

    Article  CAS  PubMed  Google Scholar 

  36. Ehrburger P, Pusset N, Dziedzinl P (1992) Active surface area of microporous carbons. Carbon n y 30:1105–1109. https://doi.org/10.1016/0008-6223(92)90142-j

    Article  Google Scholar 

  37. Ederer J, Janoš P, Ecorchard P et al (2017) Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: xps quantitation vs. Functional speciation. rsc adv 7:12464–12473. https://doi.org/10.1039/c6ra28745j

    Article  CAS  Google Scholar 

  38. Wang Q, Lei Y, Zhu Y et al (2018) Edge defect engineering of nitrogen-doped carbon for oxygen electrocatalysts in Zn–air batteries. ACS Appl Mater Interfaces 10:29448–29456. https://doi.org/10.1021/acsami.8b07863

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support from the Research Affairs of University of Tehran and Shahid Beheshti University is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Contributions

Zolfaghar Aladaghlo: conceptualization, methodology, investigation, formal analysis, validation, writing – original draft, supervision, characterization.

Ali Sahragard: conceptualization, methodology, writing – review & editing.

Alireza Fakhari: supervision, resources, writing – review & editing, project administration.

Neda Salarinejad: synthesis nanosorbent, characterization.

Siyavash Kazemi Movahed: synthesis nanosorbent, characterization.

Minoo Dabiri: Writing – review & editing.

Corresponding authors

Correspondence to Zolfaghar Aladaghlo or Alireza Fakhari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 560 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aladaghlo, Z., Sahragard, A., Fakhari, A. et al. Fe3O4@nitrogen-doped carbon core-double shell nanotubes as a novel and efficient nanosorbent for ultrasonic assisted dispersive magnetic solid phase extraction of heterocyclic pesticides from environmental soil and water samples. Microchim Acta 191, 98 (2024). https://doi.org/10.1007/s00604-023-06153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06153-8

Keywords

Navigation